search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Improved 3D Resolution of Electron Tomograms 1123


Figure 1. Left: test phantom images. Middle: sinogram data of test images. Right: Center-of-mass (COM) determined for each projection angle, and least squares solution for coordinates centers-of-mass for the test images from solving Θcx=b based off of (2). Notice for the first test image the least squares fit is perfect, and that the second test image contains an object near the corner which is not present in all projections, thus making (2) invalid, as demonstrated by the least squares fit.


Again, these small errors between alignment of neighboring projections may be invisible to us, but may accumulate into large errors for projections that are not taken at nearby angles. Therefore, a more rigorous approach that considers a more global analysis of the data. In the development of the approach, we reduce the


dimension of the problem to one particular cross-section x. We denote the cross-sectional function for this fixed x by fx(y, z), and similarly the corresponding projection of the cross-section by Pθ(fx)(y). We denote the total mass in this cross-section by Mx = RR2


of-mass coordinates by cy


x = 1 Mx


cz fxðy; zÞdy dz, and the center-


Z R2


x = 1 Mx


yfxðy; zÞ dy dz and


Z R2


zfxðy; zÞ dy dz: Then as done in Sanders et al. (2015), it is easy to show


the following center-of-mass calculation for the angular projection of fx:1


1 Z Mx R


1In Sanders et al. (2015) there is difference in the sign in (2) due to an alternative definition of Qθ.


y  Pθ ðfxÞðyÞ dy = cy xcosθ + cz xsinθ: (2) some constants cy


Therefore, any projection of fx should satisfy (2) for x and cz


angle. Therefore, if we let 2


Θ =


6 6 6 4


...


cos θ1 sin θ1 cos θ2 sin θ2


...


b = 1 Mx


6 6 6 4


3


cos θk sin θk 2RR y  Pθ1


RR y  Pθ2 RR y  Pθk


7 7 7 5


...


; cx = cy x


x


ðfxÞðyÞdy3 ðfxÞðyÞdy


ðfxÞðyÞdy


7 7 7 5


; and cz


x, which are independent of the


;


then for every x the perfectly aligned projections satisfy


Θcx=b. This equation is fundamental to our approach, and was the primary motivation for original center-of-mass techniques (Sanders et al., 2015). This approach will theo- retically achieve perfect alignment with “perfect” projection data. In addition, the method is robust to random noise. However, the major drawback is that the governing equation (2) is not valid over finite projection domains whenever the volume is not fixed, and at best we can compute the integrals in vector b over some finite interval Ω. This issue is clear to see with the demonstration pre-


sented in Figure 1. Here, the projection data are generated for two nearly identical test images, which can be considered a single cross-section fx of a 3D volume. The subtle difference


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180