search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Automated Inclusion Microanalysis in Steel by SEM 1085


Table 1. Measured Stage Current and Beam Current, and Relative Backscattered Electron (BSE) Detector Gain for XL30 (Spot Size 5) and ASPEX (Spot Size 40%) Instruments.


Accelerating Voltage 10kV


Philips XL30 Stage current (nA) Beam current (nA)


ASPEX Explorer Stage current (nA) Beam current (nA)


Relative BSE detector gain (G)


1.26 2.4


0.23 0.44 1.0


20kV


1.83 2.94


1.17 1.75 2.0


(GIb)0.5 against the reciprocal of the square root of pixel dwell time; Figures 3c and 3d showthat the relationships for 10 and 20kV do coincide for each microscope—thedifferencein BSE image noise-to-signal ratios is indeed adequately explained by differences in beam current and detector efficiency. For improved BSE image spatial resolution (discussed


below) and smaller systematic errors in inclusion composition analysis, the lower accelerating voltage (10 kV) is preferred. The larger noise-to-signal ratio associated with the lower accelerating voltage could be remedied by using a longer pixel dwell time, or by using a larger BSE detector, or a BSE detector placed closer to the sample surface. For theASPEXinstrument (at spot size 40%), lowering the accelerating voltage from 20 kV to 10 kV would require an ~8 times longer pixel dwell time to achieve the same level of BSE image noise. The corre- sponding factor is ~4 for XL30, due to a smaller effect of vol- tage on beam current for that instrument.


BSE Images: Contrast


Detection of inclusions and distinguishing phases in complex (multiphase) inclusions also requires adequate BSE image contrast. BSE image contrastmainly arises fromdifferences in mass-averaged atomic number; see Figure 4 (the values in Fig. 4 were obtained by simulation because not all of these compounds are readily available in pure form). Figure 4 illus- trates that, for bulk phases, there would be substantial BSE image contrast between oxides, sulfides (such asCaS andMnS) and titanium nitrides. The accelerating voltage does not affect therelativeBSE imagebrightness of bulk phases. However, contrast between inclusions and the steel matrix


is affected not only by the difference in mass-averaged atomic number, but also by inclusion size and shape—because, for micron-sized inclusions, the interaction volume may extend beyond the edges of the inclusion into the surrounding steel. In such a case, some electrons would be backscattered from the steel even when the beam is incident on the inclusion— increasing image brightness, and reducing contrast. Such an effect is more severe at higher accelerating voltages, as illustrated by Figure 5: shallower (spherical-cap) inclusions would appear much brighter than deeper inclusions at an accelerating voltage of 20kV; in comparison, the effect of inclusion morphology on


Figure 4. Calculated backscattered electron (BSE) image bright- ness of different bulk phases, normalized such that Fe has a brightness of 170 and Al a brightness of 40 (on the dimensionless 0–255 brightness scale). Calculated from Monte Carlo simula- tions, performed with PENEPMA (Salvat et al., 2007), for 10kV and 20 kV. Originally published by AIST in the AISTech 2015 Proceedings (Tang & Pistorius, 2015).


Figure 5. Calculated backscattered electron (BSE) image line scans (simulated with PENEPMA) across spherical Ca4Al4MgO11–CaS inclusions with 1µm apparent diameter, for three different morpho- logies, and two accelerating voltages. The three morphologies are sun- ken spheres (center of sphere below the polishing plane by the dis- tance r/2; r is the inclusion radius), hemispheres (sphere centered on the polishing plane), and sphericalcaps(centerofinclusion abovethe polishing plane by the distance r/2). The horizontal broken line gives the BSE brightness of bulk oxide. Originally published by AIST in the AISTech 2015 Proceedings (Tang & Pistorius, 2015).


differences in brightness is smaller at 10kV. (In Fig. 5, it is predicted that the image would be brighter at the steel edges adjacent to the inclusion; the reason is that some BSE generated within the steel matrix escape through the neighboring less- dense inclusion, so avoiding absorption within the steel.) The achievable contrast between inclusions and sur-


rounding steel matrix also depends on the beamcurrent and BSE detector gain (and hence on accelerating voltage and spot size). Figure 6 shows the strong effect of beam current on achievable contrast (ASPEX instrument; 10 kV). The achievable contrast is approximately proportional to the beam current.


BSE Images: Spatial Resolution


The spatial resolution in BSE images limits the smallest feature that can be detected; the spatial resolution depends


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180