search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
1094 Timothy J. Ruggles et al.


Figure 3. Norm of the erroneous two-dimensional strain detected via digital image correlation after a 10 μm translation in the hori- zontal direction. The strain contour is overlayed on a micrograph of the urethane polymer correlation pattern.


To evaluate the suitability of the stamped pattern for image


correlation, a simple displacement experiment was conducted using a stamped pattern on a piece of aluminum. The two- dimensional total strains were calculated locally using DIC. Imaging was performed at a 10.1mmworking distance with an accelerating voltage of 5keV, a beam current of 1.6nA and a pixel density of 5.12 pixels per micron. The subset size (an image correlation parameter that approximates the spatial resolution of the technique) was selected to be 55 pixels, or around 10.7μm. Subset size must be selected to be compatible with the size of the speckles in the pattern (Lecompte et al., 2006), and our subset size was determined using trial and error to achieve the desired strain resolutionwhile maximizing spatial resolution. Image drift calibration for the SEM was performed per the standard operating procedure of the image correlation software employed, VIC2DTM (Correlated Solutions, 2009). The area was imaged and then translated 10μmand imaged again. The resulting erroneous strains, pictured in Figure 3, had a mean Frobenius norm of 174 microstrain, approximately on the order of the strain resolution limit of HREBSD for high EBSD camera resolution [around 200 microstrain (Wilkinson et al., 2006)]. Note that increasing the subset size would reduce error in the measured strain at the expense of spatial resolution, but this subset size was selected to maximize the spatial reso- lution afforded by the 1μmspeckle size of the stamp, while still maintaining similar strain accuracy to HREBSD.


DISCUSSION


This work presents a new method of applying a speckle pattern for DIC in a SEM, which does not disrupt EBSDdata collection, urethane polymer microstamping. The residual layer of urethane left by this stamping process has sufficient mass for contrast at low accelerating voltages, but has a small effect on the quality of EBSD patterns that can be collected from the underlying surface. This allows for DIC and HREBSD, a technique particularly sensitive to the quality of EBSD patterns, to be carried out on the same surface at the same length scale in situ. The stamped pattern resulted in an ~28% increase in the measured noise of HREBSD. Note that this number could be improved by increasing the exposure time or beam current which were kept constant for the experiment. Currently, microstamps have been successfully


fabricated with a 1 μm speckle size, which results in a spatial resolution of around 10.7 μm and a noise level in the strain measurements of around 170 microstrain. The spatial reso- lution may be improved by refining the speckle size of the stamp, which has a resolution limit of around 30 nm. Fur- thermore, the error level of the HREBSD measurements of elastic distortion and DIC results of total strain are of com- parable magnitude, meaning that together they can be used to extract plastic strain. Future work will focus on applying the current 1 μm microstamp to the characterization and modeling of the deformation of oligocrystals as well as developing higher resolution stamps to work at the length scale of engineering materials.


ACKNOWLEDGMENTS


This work was supported by the National Aeronautics and Space Administration’s Aeronautics Research Mission Directorate through the Digital Twin effort within the Convergent Aeronautics Solutions project.


REFERENCES


ALKORTA, J. (2013). Limits of simulation based high resolution EBSD. Ultramicroscopy 131,33–38.


BOMARITO, G., HOCHHALTER, J., RUGGLES,T. & CANNON, A. (2017). Increasing accuracy and precision of digital image correlation through pattern optimization. Optics Lasers Eng 91,73–85.


BOOK, T.A. & SANGID, M.D. (2016). Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process. JOM 68, 1780–1792.


BRIGHAM YOUNG UNIVERSITY (2015–2016). OpenXY, github.com/ BYU-MicrostructureOfMaterials/OpenXY.


CANNON, A., MAGUIRE,M. & HOCHHALTER, J. (2015a). Method and stamp for repeatable image correlation micro patterning and resulting specimen produced therefrom. US Patent Application 62116742.


CANNON, A.H., HOCHHALTER, J.D., BOMARITO, G.F. & RUGGLES, T.J. (2016). Micro speckle stamping: High contrast, no basecoat, repeatable, well-adhered. Conference Proceedings of the Society for Experimental Mechanics Series, International Digital Imaging Correlation Society, Philadelphia.


CANNON, A.H., HOCHHALTER, J.D., MELLO, A.W., BOMARITO, G.F. & SANGID, M.D. (2015b). Microstamping for improved speckle patterns to enable digital image correlation. Microsc Microanal 21, 451–452.


CHOI, Y.S., GROEBER, M.A., SHADE, P.A., TURNER, T.J., SCHUREN, J.C., DIMIDUK, D.M., UCHIC, M.D. & ROLLETT, A.D. (2014). Crystal plasticity finite element method simulations for a polycrystalline Ni micro-specimen deformed in tension. Metall Mater Trans A 45, 6352–6359.


CORRELATED SOLUTIONS (2009). VIC-2D, Reference Manual. Available at http://www.correlatedsolutions.com (Retrieved January 17, 2017).


DI GIOACCHINO,F.&QUINTA DA FONSECA, J. (2013). Plastic strain mapping with sub-micron resolution using digital image correlation. Exp Mech 53, 743–754.


DINGREVILLE, R., KARNESKY, R.A., PUEL,G. & SCHMITT, J.H. (2016). Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci 51, 1178–1203.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180