This page contains a Flash digital edition of a book.
technology  GaN HEMTs


hot electron relaxation can be accompanied by other mechanisms, such as electron-phonon and interface scattering [2].


Electronic traps


Electrons passing along the channel can face other obstacles. These include electronic traps, which can have a direct or indirect impact on the life of an electron and the related current density. One type of electronic trap is associated with defect states, which capture and release electrons within a characteristic time, thereby modifying the electric field distribution near the device channel. Identifying the location of traps in degraded HEMTs is very challenging. The most common approach is to turn to simulation to estimate the location of the traps, based on a fit to electrical device characteristics. This is a valuable, but rather indirect approach.


In another class of device, a large-area capacitor, gate-capacitance-based measurements, such as conductance techniques, are widely used to evaluate trap characteristics. However, this approach cannot be transferred to short-channel devices, because inaccuracies are far larger, due to the weak capacitance signal offered by the small gate area. In contrast, dynamic transconductance does not require capacitance measurements to extract the trap conductance [3]. In this case, both the interface and the bulk traps are detected and distinguished by analysing bias dependence of the extracted conductance (see Figure 2 for an example of bulk trap conductance). In addition to bulk and AlGaN/GaN interface traps, surface and subsurface traps can impact the path of the electron as it passes along the channel. If the traps are near the gate, they affect the electric field in the channel that governs the electron transport.


UV-assisted transient trapping is capable of locating and identifying electronic traps in GaN HEMTs. This technique involves applying a trap-filling pulse at a high negative gate-source voltage and then recording the de-trapping transient in on-state operation. Exposing the transistor to UV-light prior to the filling pulse can modify the electronic trap population.


We have determined the current transient trapping characteristics for GaN HEMTs illuminated with UV light of different photon energies (see Figure 3). These measurements reveal three trap states with different time constants: Only the slow trap is strongly affected by light exposure. When illuminated with photon energies between the bandgaps of AlGaN and GaN, these devices show a large trapping amplitude, indicating that the traps are located in the AlGaN barrier close to the gate (see the inset of Figure 3).


These traps are probably caused by oxygen reactions at the device surface [4], which can reduce the


Figure 3.Transient current-trapping characteristics of an AlGaN/GaN/SiC HEMT.A trap-filling pulse was applied at VDS


= 0 V ,VGS = -10 V


with subsequent transient


measurements at VDS


= 0.5 V ,VGS = 1 V . electric field in the electron channel.


The consequences of this are not limited to reduced electron acceleration in the channel, and include partial depletion of the 2DEG and a subsequent decrease in drain current.


When surface trap density increases during device operation and electrical stressing, leakage pathways are formed through the AlGaN barrier to the device channel. Leakage current then rises during device stress, correlating with the appearance of EL spots during off-state operation [5]. We have noted that there are localised EL spots along the drain edge of the gate – where the maximum electric field is located – that multiply in number during device stress (see Figure 4). The appearance of each new spot coincides with a step increase in the gate


The current transients are labelled with the photon energy of the UV light exposed to the device prior to measurement


,


Typical experimental setup used for combined electrical and optical device testing,including Raman thermography,photoluminescence and electroluminescence analysis as well as device stressing and transient trapping analysis


January / February 2013 www.compoundsemiconductor.net 71


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233