This page contains a Flash digital edition of a book.
conference report  IEDM


Figure 5.Cross- sectional TEM image of a GeSn MOSFET produced by a collaboration led by researchers at Stanford University


image reveals that the GeSnOx


layer


formed by the oxidation process is just 2.6 nm thick


Taking these devices and producing them in foundries will be challenging. “The more complicated the structure of the device, the greater the problems of reliability and manufacturability,” admits Ye, who would be delighted to team up with an industrial partner to tackle these issues.


.This Options for the p-FET


They have now addressed these weaknesses by halving the thickness of the Al2


O3 gate dielectric


from 10 nm to 5 nm, which has improved electrostatic control. In addition, they have boosted the mobility in the channel by switching the composition from In0.53


Ga0.47 As to In0.65 Ga0.35 As.


Thanks to these changes, typical values for sub- threshold swing in devices with a 50 nm long channel have fallen from 150 mV/decade to just under 100 mV/decade, while DIBL has plummeted from 210 mV/V to just 50 mV/V. Transconductance has also risen, hitting 1.1 mS/µm at a drain-source voltage of 0.5 V.


Results for the four-dimensional transistors, which sport an In0.53 Al2


Ga0.47 O3 As channel and a 10 nm-thick


gate dielectric, are also encouraging. Measurements on a transistor with a 4 by 3 nanowire array with 200 nm long channels produce a transconductance of 0.6 mS/µm at a drain-source voltage of 0.5 V. This value, plus that for the perimeter-normalized drive current, are similar to those produced by the three-dimensional transistors described at IEDM 2011.


More recently, these engineers from Stanford have developed a complimentary electron channel in collaboration with researchers at imec, KULeuven and GlobalFoundries. According to corresponding author of the paper detailing this work, Suyog Gupta, the attraction of using GeSn for the n-channel – rather than the likes of InGaAs – is that it enables a ubiquitous platform for seemless integration of CMOS logic and silicon-compatible photonics (see Figure 4). “We intend to use germanium tin as a single material platform of high- performance logic and optoelectronics,” explains Gupta, who points out that this alloy is the only group IV material with a direct bandgap, which makes it a very attractive candidate for providing light emission.


One of the biggest challenges facing the pioneers of germanium and GeSn nMOSFETs is to develop a process that yields high-quality surface passivation. “We have solved this issue for both germanium and germanium tin and achieved a very low high- K/semiconductor interface trap density,” explains Gupta. Fabricating high-quality gates begins with ALD of a 1 nm-thick layer of Al2


O3 or GeOx . Oxidation at


400 °C in ozone then creates an interfacial layer of GeSnOx


according to cross-sectional transmission electron microscopy images (see Figure 5). These gate stacks have a high-quality interface, according to plots of capacitance as a function of voltage that show negligible frequency dispersion in depletion and accumulation.


Figure 6.Germanium pMOSFTS and InGaAs- on-insulator nMOSFETs have been built side- by-side on germanium substrates by engineers at the University of Tokyo


38 www.compoundsemiconductor.net January / February 2013


Gupta explains that one of the benefits of the improved passivation process is enhanced electron mobilities in the nMOSFETs. The room-temperature mobilities in the team’s transistors, which contain between 6 percent and 8.5 percent tin, can get close to 400 cm2


V-1 s-1 . However, electron mobility in these devices is still inferior to those with , which has a thickness of 2.6 nm,


Although germanium is the leading candidate for the hole channel, SiGe and GeSn could yield better results. The latter enables an increase in hole mobility: According to a IEDM 2011 paper presented by a team headed by researchers at Stanford University, switching from a germanium channel to a GeSn alloy with just 3 percent tin boosts hole mobility by 20 percent.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233