This page contains a Flash digital edition of a book.
news digest ♦ Solar


Friedman comments. “The lattice match makes materials easier to grow.”


They concentrated on materials from the third and fifth columns of the periodic table because these III-V semiconductors have similar crystal structures and ideal diffusion, absorption, and mobility properties for solar cells.


But there was seemingly no way to capture the benefits of the GaAs material while matching the lattice of the layer below, because no known III-V material compatible with GaAs growth had both the desired 1-eV band gap and the lattice-constant match to GaAs.


That changed in the early 1990s, when a research group at NTT Laboratories in Tokyo working on an unrelated problem made an unexpected discovery. Even though GaN has a higher band gap than GaAs, when you add a bit of nitrogen to GaAs, the band gap shrinks - exactly the opposite of what was expected to happen.


“That was very surprising, and it stimulated a great deal of work all over the world, including here at NREL,” Friedman says. “It helped push us to start making solar cells with this new dilute nitride material.”


Good Band Gaps, but Not So Good Solar Material


The new solar cells NREL developed had two things going for them - and one big issue.


“The good things were that we could make the material very easily, and we did get the band gap and the lattice match that we wanted,” Friedman says. “The bad thing was that it wasn’t a good solar cell material. It wasn’t very good at converting absorbed photons into electrical energy. Materials quality is critical for high-performance solar cells, so this was a big problem.”


Still, NREL continued to search for a solution.


“We worked on it for quite a while, and we got to a point where we realized we had to choose between two ways of collecting current from a solar cell,” Friedman says. “One way is to let the electrical carriers just diffuse along without the aid of an electric field. That’s what you do if you have good material.”


172 www.compoundsemiconductor.net January/February 2013


If the material isn’t good, though, “you have to introduce an electric field to sweep the carriers out before they recombine and are lost,” Friedman adds.


But to do that, virtually all impurities would have to be removed. And the only way to remove the impurities would be to use a different growth technique.


Using Molecular Beam Epitaxy to Virtually Eliminate Impurities


Solar cells are typically grown using MOVPE.


“It works great, except you always get a certain level of impurities in the material. That’s usually not a problem, but it would be an issue for this novel material, with the gallium arsenide diluted with nitrogen,” Friedman points out.


However, a different growth technique, MBE, used in an ultra-high vacuum, ( 10-13 atmospheres), can lower the impurities to the point where an electric field can be created in the resulting photovoltaic junction. And that would make the otherwise promising gallium-arsenide-dilute-nitride material work as a solar cell.


“The only problem was that there was no one in the entire world manufacturing solar cells by MBE,” Friedman says.


But that was soon to change.


Partnering with Stanford University Startup, Solar Junction


A Stanford University research group with expertise in the use of MBE for other electronic devices saw an opportunity. In around 2007, they spun out a startup company they named Solar Junction.


Because Solar Junction was a mix of enthusiastic recent Ph.D.s and experienced hands from outside the established solar cell field, “they weren’t tied to the constraints of thinking this couldn’t be done, that the only economically viable way to make solar cells was with MOVPE,” Friedman says.


The federal lab and the startup got together. Solar Junction won a $3 million DOE/NREL Photovoltaic


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233