This page contains a Flash digital edition of a book.
Equipment and Materials ♦ news digest


As announced on August 16th, its only customer REC Wafer Norway AS filed for insolvency in the summer of this year. Subsequently, SiC Processing AS has started a solvent winding-up procedure with the consent of its major creditors. Selected creditors have now decided to not maintain their consent, which is required for a solvent winding-up.


GaN devices on large scale (111) silicon substrates.


Now, this experience is being transferred to growth on Si(001) and Si(110) substrates. This is because GaN based power electronics can be easily integrated with standard silicon electronics (CMOS). What’s more, like Si(111), these substrates are also available in large sizes of up to 300 mm.


In October 2012, Jonas Hennig of Otto-von- Guericke Universität Magdeburg in Germany reported results on high performance GaN HEMT structures grown on Si(001). The structures incorporated highly optimised interlayers to control stress and defect density.


The results were presented at the International Workshop on Nitride Semiconductors in Japan.


Financial consequences for SiC Processing GmbH, its creditors or creditors of its other subsidiaries beyond the cases mentioned in the ad-hoc announcement of 16th August 2012 are currently not foreseen.


With approximately 755 employees worldwide, SiC Processing GmbH is located in 5 countries all over the world with production sites in Germany, China and US and a sales office in Italy. Production sites in Norway were closed down in mid 2012. The founder family holds a 25 percent stake beside the majority shareholder Nordic Capital Fund VII.


Controlling GaN-on- silicon(001) growth with insitu monitoring


Laytec has reported EpiCurve TT results obtained during the growth of gallium nitride HEMTs on Si(001) substrates


The growth of GaN on Si(111), especially for LEDs, is quite well known and relatively controllable.


Cooldown-assisted layer cracking as a result of high tensile stress can be prevented and crystal quality can be enhanced by sophisticated interlayers. Many institutions are using LayTec‘s EpiCurve TT tool with advanced curvature resolution to grow high quality


Figure 1: In-situ measurements of temperature (red) and curvature (black)by EpiCurve TT during GaN on Si(001) growth.


The three combined reflectance signals help to determine the growth rates and allow adjustment of the growth parameters. In addition, the 405 nm reflectance (the black line in Figure 2 below), provides information on the structural interface quality.


January/February 2013 www.compoundsemiconductor.net 213


According to Hennig, in-situ growth monitoring by Epi-Curve TT is a great help for their strain engineering.


The well pronounced Fabry-Perot oscillations at 633 nm (red) and 950 nm (blue) in correlation with the smooth development of the curvature show the high quality of the GaN. What›s more, during the growth of interlayers, when the temperature is being reduced, an abrubt increase in curvature can be observed as shown in Figure 1 below.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233