This page contains a Flash digital edition of a book.
conference report  IEDM


Into the fourth dimension


The four-dimensional transistors that are being pioneered by Peide Ye’s team at Purdue University feature a two-dimensional array of InGaAs nanowires. Fabrication begins with the growth of epiwafers on InP substrates. This involves deposition of a 10 nm-thick undoped InAlAs etch stop layer, followed by an undoped 80 nm InP sacrificial layer and a stack of pairs of InP and InGaAs layers: three In0.53


As channel layers that are 30 nm thick, sandwiched between 40 nm InP layers. Uniform doping of the source and drain contacts is realized by a two-step silicon implantation process, using energies of 20 keV and 60 keV and a dose of 1 x 1014


Ga0.47 cm-2 .


Dopant activation resulted from rapid thermal annealing in nitrogen gas for 15 s at 600 °C.


A 10 nm-thick Al2 O3 hard mask, deposited by atomic layer


deposition (ALD), paved the way to the formation of fins with a height of 200 nm. These were defined through etching in a mixture of chlorine gas and oxygen, a pairing that is superior to BCl3


for


yielding high quality sidewalls. Subsequent etching in a solution based on hydrogen chloride released the nanowire arrays, before the structure was passivated in 10 percent (NH4


)S2 O3 . After this step,


at 300 °C, followed by the growth of WN at 385 °C. The last steps of the fabrication process involved etching to form the base in a mixture of methane and oxygen, and electron beam evaporation of Au/Ge/Ni, followed by lift-off to define source and drain contacts. After forming the source/drain alloy at 350 °C, Cr/Au test pads were defined.


germanium channels. That’s because the mobility is held back by growth on relaxed germanium buffers, which cause the GeSn to be under biaxial compression, due to its larger lattice constant than germanium. “The compression is one of the reasons why we see an improvement in hole mobility [when switching from germanium to germanium tin],” explains Gupta, who reveals that this strain also reduces the speed that electrons zip through the material. The next step for the team is to form relaxed GeSn. “We believe that this is important, since we expect relaxed germanium tin to show performance enhancements over germanium.”


Improving gate stacks Very little work has been carried out so far on the unification of post-silicon nFETs and pFETs. This has been accomplished on a germanium platform by a team from the University of Tokyo headed by Shinichi Takagi and Mitsuru Takenaka (see Figure 6), and at the most recent IEDM they reported electron and hole mobilities of 1800 cm2 and 260 cm2


V-1 V-1 s-1 s-1 , respectively. This represents


electron and hole mobility enhancements of 250 percent and 130 percent, respectively, compared with silicon.


the wafers were immediately loaded into the ALD tool for deposition of Al2


Takagi explains that this work is in its infancy: “In this feasibility study the channel length is pretty long. It is 50 or 20 micrometres, though shorter channel devices are also operating.” The operating voltage for these devices is about 2 V.


The paper that they presented at IEDM details a number of recent breakthroughs, including the development of germanium nMOSFETs and pMOSFETs. Built on native substrates, this pair of transistors combined very high mobilities for this material system with very few interface traps and a low EOT. For example, transistors with an EOT of just 0.82 nm and 0.76 nm have produced electron mobilities of 754 cm2 690 cm2


V-1 V-1 s-1 .


They key to all this success is the novel process for producing the gate, which is a stack of HfO2 GeOx


, Al2 film of Al2 , before oxygen plasma treatment


creates a GeOx GeOx


O3 ,


and germanium. ALD is used to deposit a thin O3


does not get too thick, because the Al2


film under this layer (see Figure 7). O3


as an oxygen barrier, and experiments by the team have shown that just 0.5 nm of GeOx


can reduce


the density of interface traps. The addition of HfO2 needed, because Al2


O3 has a relatively low January / February 2013 www.compoundsemiconductor.net 39 is acts s-1 and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233