This page contains a Flash digital edition of a book.
Equipment and Materials ♦ news digest


multi-functional organic molecules (linkers) and metal ions into a 3D network. The well-defined, highly-ordered, and readily-controlled structure of MOFs can be exploited in a diverse range of applications including gas storage, separations, catalysis, sensors and drug delivery. The presence of modifiable organic linkers in the MOF structure enables tunability of function and customisation of end use.


Current routes to MOF materials typically rely on solution-based processes in which the organic linker and the metal source – a metal salt, carbonate or oxide - are partially or fully dissolved in an appropriate solvent and reacted. The reaction can occur in a tightly closed vessel at high temperature or by subjecting the solution to microwaves, ultrasound or electrochemical treatment.


Metal-organic framework materials can a liquid, which can be included as an additive with the initial solid-phase reaction mixture or generated in situ as a byproduct during the milling process. Although often asserted to be “solid-state,” such processes necessarily involve liquid components, which can act as liquid micro-reactors that control the reaction process and promote the formation of MOFs by the conventional solution-based mechanism.


Until the discovery, it was uncertain whether MOF materials could be prepared in a completely liquid- free environment and whether new types of MOF materials and MOF materials of the purity required for many high-tech applications could be prepared in a cost-effective process.


“Excluding liquids from the preparation finally opens the way to making MOF materials whose properties are not influenced by the presence of contaminants and, therefore, may be quite different from those of conventional MOFs. Our approach also avoids the use of solvents, which are often harmful to the environment, difficult to remove from the extended 3D networks of the targeted MOF product materials, and detrimental to the performance of MOF materials in many applications,” says Viktor Balema, Manager of the Aldrich Hard Materials Centre of Excellence.


Balema further notes that “Aldrich’s process should enable generation of unique hybrid structures with non-conventional properties applicable in numerous areas of modern science and technology, which


extend from energy generation and storage to electronics and bio-technology.”


Prior to journal publication, Aldrich Materials Science filed a provisional patent application for the newly discovered procedure with the US Patent Office.


“This discovery exemplifies the work being done at the Hard Materials Centre of Excellence. Through this Centre along with the Polymer Centre of Excellence, we seek to enable innovation through new product additions to our materials portfolio, collaborations, technology licensing, custom research, process development and scale-up,” comments Shashi Jasty, Director, Aldrich Materials Science.


Vienna University orders Riber MBE reactors


The reactors will be used for compound semiconductor microelectronics and optoelectronics research


Riber has sold two Compact 21 MBE machines to Vienna University of Technology, a material research laboratory in Europe.


The Compact 21 - 3 ‘’ wafer systems are designed for the research on compound semiconductors for microelectronics or optoelectronics. MBE growth technology was selected as this platform is perfectly optimised when top performances of complex semiconductor heterostructures are needed.


These two new systems will enable Vienna University of Technology to increase his research capacities on new III-V and metal based structures. To extent the research capabilities and to grow ‘’incompatible’’ material structures, the two MBE systems are connected together to maintain a full UHV environment all along the MBE processes.


Riber designs and produces MBE systems as well as evaporation sources and cells for the semiconductor industry. This high-technology equipment is essential for the manufacturing of compound semiconductor materials and new materials that are used in numerous consumer applications, such as new information technologies,


January/February 2013 www.compoundsemiconductor.net 209


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233