This page contains a Flash digital edition of a book.
Sheraton Frankfurt Airport Hotel 04 March Substrates & Materials Award Kyma Technologies 150-mm 4HN Silicon Carbide Epitaxial Wafers


In 2012 Cree successfully developed new high quality low micropipe 150-mm 4H n-type silicon carbide, (SiC) epitaxial wafers. Cree’s latest advancement lowers device cost and enables adoption for customers with existing 150-mm diameter device processing lines for 150-mm epitaxial wafers with highly uniform epitaxial layers as thick as 100 microns.


SiC is a high-performance semiconductor material used in the production of a broad range of lighting, power and communication components including, LED power switching devices and RF power transistors for wireless communications. Cree’s 150-mm diameter single crystal SiC substrates enable cost reductions and increased throughput while bolstering the continued growth of the SiC industry. Cree’s ability to deliver high volumes of 100-mm epitaxial wafers is unrivalled in the SiC industry and the latest 150-mm technology continues to raise the standards for SiC wafers.


Cree’s vertically integrated approach offers customers a complete solution for high quality 150-mm SiC epitaxial wafers providing industry leaders within the power electronics market the stable supply they demand.


What industry challenge does this address? Cree is successfully addressing the lack of availability of affordable high quality SiC materials within the power electronics market.


How does it solve the problem?


Cree leads the SiC materials marketplace in driving to larger diameters and this latest advancement lowers device cost and enables adoption for customers with existing 150-mm diameter device processing lines. Cree’s vertically integrated approach offers customers of a complete solution for high quality 150-mm SiC epitaxial wafers providing industry leaders within the power electronics market the stable supply they demand.


10-Inch Diameter Aluminum Nitride on Sapphire Template Product


Kyma Technologies, Inc., a supplier of crystalline aluminium nitride (AlN) and gallium nitride (GaN) materials and related products and services, announced in 2012 the successful demonstration of a 10-inch diameter aluminum nitride (AlN) on sapphire template.


Kyma’s AlN templates are manufactured using its patented plasma vapour deposition of nanocolumns (PVDNC™) technology, which provides GaN LED manufacturers with throughput, cost, and performance benefits. LED manufacturers can choose Kyma’s PVDNC™ AlN templates as a replacement for bare and patterned sapphire substrates by manufacturers of blue, green, and white light emitting diodes (LEDs).


Until recently, the wafer diameter standard for GaN LED wafer manufacturing has been 50mm (2”). Recently, sapphire manufacturers have made much progress in increasing the size of sapphire boules from which ever larger sapphire substrates can be sliced, with sapphire diameter demonstrations up to 12” being achieved by certain sapphire providers. (The 250-mm (10-inch) diameter sapphire substrate was provided courtesy of Monocrystal, of Stavropol, Russia.)This has enabled some of the major GaN LED manufacturers to begin transitioning to larger diameter sapphire, up to 150-mm (6-inch) in some cases, to enhance manufacturing throughput and to achieve better economies of scale. Kyma believes the LED community will begin looking beyond 150mm (6-inch) diameter in the next few years.


In 2011 Kyma announced the successful commissioning of its new high volume PVDNC™ AlN template manufacturing tool and the demonstration of the world’s first 300mm (12-inch) diameter AlN on silicon template that is suitable for high quality gallium nitride (GaN) growth.


Kyma’s 10” diameter PVDNC AlN on sapphire template is pictured along with smaller diameter (6” and 4”) products.


Rubicon Technology 6-inch sapphire substrates


Rubicon Technology is an advanced electronic materials provider that is engaged in developing, manufacturing and selling monocrystalline sapphire and other crystalline products for light-emitting diodes (LEDs), radio frequency integrated circuits (RFICs), blue laser diodes, optoelectronics and other optical applications. The company applies its proprietary crystal growth technology to produce very high-quality sapphire in a form that allows for volume production of various sizes and orientations of


January / February 2013 www.compoundsemiconductor.net 43


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233