This page contains a Flash digital edition of a book.
conference report  IEDM


Figure 7.Researchers at the University of Tokyo create GeOx below Al2


films O3 layers via


oxidation with an ECR oxygen plasma


standby power applications,” explains Takagi. “So, although 0.76 nanometres might not really be enough for high-performance applications, it is pretty close.”


Takagi and his co-workers have also developed a process for forming germanium-rich MOSFETs on silicon substrates (see box “Building on silicon” for details of this process). This creates a highly strained channel, helping to enhance hole mobility to a value eight times higher than that found in silicon MOSFETs.


permittivity, and limits the EOT to 1 nm. Just using HfO2


on top of GeOx is not an option, as these


layers intermix, creating an interface with many traps.


Creating a HfO2 /Al2 O3 /GeOx /germanium stack leads


to an EOT of just 0.76 nm. “According to the ITRS 2011 [roadmap], EOT at the 11 nm node is 0.76- 0.61 nanometres for high-performance applications, 0.86-0.75 nanometres for low operating power applications and 1.1-0.9 nanometres for low


Building on silicon


Researchers at the University of Tokyo have recently developed a process to form germanium-based pMOSFETs on strained silicon-on-insulator (SOI) substrates. Fabrication of devices begins by taking a SOI substrate, depositing a thin film of silicon on this, and adding a layer of SiGe on top of that (left). This wafer is then oxidized at high temperature, and during this process silicon atoms are preferentially oxidized to form a SiO2


film, while germanium atoms are rejected and transferred to the SiGe film (middle).


When InGaAs, rather than germanium, is used for the electron channel, the indium content is often used to adjust the strain and ultimately the mobility. Takagi and co-workers, however, have been able to decouple the influence of strain from the impact of adjustments in InGaAs composition. “We have changed the strain under a given indium content by using relaxed InGaAs buffers with different indium contents, allowing us to extract the effect of strain on mobility.”


The team from Tokyo have formed these transistors on silicon. One way to do this is to etch narrow trenches in silicon wafers, and deposit material into these groves to form the channel of the device. Takagi says that in terms of productivity, this approach is the most attractive option, because the only additions to the CMOS process are selective growth processes. “The difficulty [with this approach] is the channel material quality – the lattice mismatch between silicon and both III-Vs and germanium is so large, and so many defects can be introduced into the channels. Aspect ratio trapping can mitigate the density of dislocations, but the material quality has not been proven yet.”


Direct wafer bonding Takagi and his co-workers have taken a different approach to forming III-V transistors on silicon – direct wafer bonding. This “guarantees” material quality, says Takagi, but he adds that it impairs productivity and probably leads to higher production costs. Another downside of this approach is that it is challenging to realize selective formation of III-Vs and germanium on silicon, and this could constrain chip design.


The buried oxide (BOX) layer prevents germanium atoms from diffusing into the silicon substrate, leading to a steady increase in the germanium content in this layer. Meanwhile, silicon atoms in the SiGe layer diffuse to the interface with SiO2


a pure film of germanium can be formed (right). 40 www.compoundsemiconductor.net January / February 2013 . Once all the atoms of silicon above the BOX are oxidized,


Lukas Czornomaz from IBM Zurich Laboratory agrees with Takagi that direct wafer-bonding delivers very high material quality, and claims that it is the most mature technology for wafer scale formation of III-V and germanium transistors on silicon. “Direct wafer bonding will be the first to allow a proper technology evaluation at dimensions and densities which are relevant for the semiconductor industry.”


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233