This page contains a Flash digital edition of a book.
LEDs ♦ news digest


was deposited using an e-beam evaporator. A high electron mobility light-emitting transistor (HEM-LET) with ohmic source and semitransparent Schottky drain was made simultaneously.


Ni/Au (20/200 nm) was used as the gate metal and a SiN x/AlO (15/8 nm) stack insulator used as the gate dielectric for the HEM-LET, in order to single out the Schottky drain. Finally, the device was annealed at 400degC for 10 minutes in N2 ambience.


EL emission at room temperature


The team measured the current- voltage characteristics, and the EL and photoluminescence (PL) spectra. (A 266nm laser was used to excite the AlGaN/GaN heterostructure for the PL measurement).


and PL spectra


The team also experimented with another Schottky metal, Pt/Au and found similar results concluding this is a general property of metal-AlGaN/GaN Schottky diodes.


From these results, the researchers think it would be possible to realise synchronous radio-frequency/ optical communications using an AlGaN/GaN HEM- LET, and an all-on-chip opto-coupler for III-nitride power electronics.


They also suggest that the metal-AlGaN/GaN light- emitting Schottky diode provides an alternative for micro-display with unique advantages. The back electrode is served by a high-mobility 2DEG channel, and the pixel is defined by the top Schottky contact, eliminating th mesa etching process and current spreading design and allowing for a higher resolution and smaller pixel size.


Plessey expands its


distribution network for GaN- on-Si LEDs


Solid State Supplies appointed for the UK and Ireland


With semi-transparent Ni/Au (5/6 nm) Schottky metal, the team reported clearly seeing EL emission from the Ni/Au-Al 0.25Ga 0.75 N/GaN Schottky diode at room temperature when the forward bias is higher than 2.2V. The EL intensity becomes stronger at a higher bias.


They found that the EL spectra consisted of not only yellow and blue luminescence but also a narrow GaN band-edge UV component at 3.4eV, similar to the PL spectra of the AlGaN/GaN heterostructure as shown in graph c) above.


Both the EL and PL spectra are from the GaN layer; no emission from the thin AlGaN barrier layer was detected. The yellow/blue is due to radiative transition of electronics from conduction band of a shallow donor to a deep acceptor in the GaN layer. Its relative intensity, compared with GaN band- edge UV emissions decreased with increasing bias/ current or laser excitation intensity in both the LE


Plessey announced that it has entered into a distribution agreement with Solid State Supplies Ltd, an electronics distributor headquartered in Redditch, UK, to expand its European network with coverage in the UK and Ireland market for its GaN- on-Si LED products.


John Macmichael, managing director of Solid State Supplies said: “Plessey’s GaN-on-Si technology looks set to cause major disruption in the LED lighting market. Our in-house lighting division is already geared up to support lighting and luminaire designers with these new LEDs. We look forward to a very bright future in partnership with Plessey.”


David Owen, Plessey’s regional sales director, added: “Plessey is very pleased to join forces with a distributor that has a focused lighting division already up and running, helping the significant number of lighting and luminaire makers in the UK. Solid State Supplies has a strong portfolio of products to support the lighting eco system which is


Issue VI 2014 www.compoundsemiconductor.net 79


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160