This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


Researchers show low temperature deposition of GaN for TFTs


Study demonstrates possibility of using GaN layers to make flexible transparent substrates


Researchers at the Bilkent University in Turkey have grown GaN thin film transistors (TFT) with a thermal budget below 250 degC. The study, they say, demonstrates the possibility of using low- temperature atomic layer deposition (ALD)-grown GaN layers to make stable flexible/transparent TFT devices.


TFTs, usually based on amorphous Si (a-Si), are the driving elements of liquid crystal display technology. However, due to low carrier mobility in a-Si, high fabrication thermal budget, and strong absorption of visible light, a-Si is not suitable for flexible and transparent electronics applications. Transparent metal oxides, in particular ZnO, have been proposed instead but stability remains an important problem.


As a transparent semiconducting material with a band-gap of 3.4eV, GaN is another option for the active layer of TFTs, however the two main deposition techniques for the use of epitaxial GaN films require high deposition temperatures.


To use GaN in settings with limited thermal budget, such as back end of line (BEOL) and flexible substrates, low-temperature deposition of GaN is being pursued using various methods such as sputtering, pulsed laser deposition (PLD), and atomic layer deposition (ALD).


ALD offers the most uniform and conformal deposition even at sub-nanometer thickness levels, say the researchers. In their paper in Applied Physics Letters, the team at Bilkent describe the development of a hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD)-grown GaN based TFT with the lowest reported thermal budget so far, keeping the entire layer growth and device fabrication steps below 250degC.


The researchers report that the deposited GaN thin film has a polycrystalline wurtzite structure with a crystallite size of 9.3nm using GIXRD and LPA, respectively. Elemental analysis of the films revealed the low amount of oxygen in HCPA-ALD based GaN thin films. Output characteristics of the TFTs are obtained which show that the fabricated devices exhibit n-type enhancement mode field effect transistor behavior with clear pinch-off and saturation characteristics. Transfer characteristics of the devices show that the fabricated transistors have on-to-off ratios of 2 x 10 3


A 3D picture of the proposed TFT is shown above (a) , and a scanning electron microscope (SEM) image of the top view of the device is shown below (b).


. Finally, the effect of


the positive gate bias stress on threshold voltage of the devices is studied, and reasonable threshold voltage shifts for a device with a considerably thick gate insulator are obtained.


Reference: Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels by S. Bolat et al, Appl. Phys. Lett. 104, 243505 (2014); http://dx.doi. org/10.1063/1.4884061


160 www.compoundsemiconductor.net Issue VI 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160