This page contains a Flash digital edition of a book.
NEWS ANALYSIS


While high power vertical-cavity surface emitting lasers have been under development for more than fifteen years, only now is the technology truly set to rival alternative technologies in a range of applications.


GaAs VCSELs, emitting at 850 nm, have long-served as the workhorse of the data communications industry, providing optical data links for distances of a few hundred metres. But now the GaAs VCSEL as well as longer wavelength GaN and InP devices, are making in-roads into myriad applications with the global market set for double-digit growth.


A recent market forecast from BCC Research predicts VCSEL markets will be worth some $2.1 billion come 2018, representing a five-year compound annual growth rate of 33.1 percent.


Analogue broadband signal transmission and absorption spectroscopy market segments are predicted to each hit the highest CAGRs – just over 37 percent –


while optical fibre data transmission is forecast to attain a 31.2 percent CAGR over the same five years.


For now the GaAs VCSEL is expected to remain dominant. BCC’s 2012 figures reveal GaAs grabbed a little more than 80 percent of the VCSEL market, with InP taking 13 percent, GaN only 1 percent and other materials making up the remainder.


As BCC photonics analyst, Gaurav Bhushan, explains: “GaAs VCSELs are witnessing proliferating growth in advanced sensing applications that are anticipated to fuel the next wave of innovation in consumer products including tablets, cell phones and other handheld devices.”


Gesture recognition with 3D sensing is a crucial and growing market for the technology. Earlier this year, IQE delivered the first 6-inch VCSEL epiwafers for high volume, low cost applications, citing gesture recognition for gaming and non-contact navigation


in smartphones and tablets, as well as depth imaging for 3D vision in handsets as key markets.


In a gesture recognition system, light from an infrared source is passed through an optical element to spread the light into a light sheet, so sensors can capture depth information across, say, an entire room, by measuring light reflected from its objects.


Such a system demands high power and precision, which is where the VCSEL comes into its own. Distributed feedback lasers, for example, are relatively low power, so the gesture recognition system would require several of these edge emitters. Meanwhile the LED, while cheap, cannot be modulated quickly, limiting resolution and increasing power consumption.


In contrast GaAs VCSELs offer optical efficiency within a small footprint, and come at a low cost. “VCSELs have already replaced edge emitters and LEDs in lower power applications, thanks


VCSELs: Beyond Red


When it comes to VCSELs, GaAs is the leading light, but GaN and InP devices are now gaining market share, reports Rebecca Pool.


26 www.compoundsemiconductor.net Issue VI 2014 Copyright Compound Semiconductor


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160