news digest ♦ Novel Devices Research and Education program.
The paper ‘Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy’ by Y. Sono et al. appears in Nature Scientific Reports 4, Article number: 6046
Scientists at the State Key Laboratory of Molecular Engineering of Polymers, at Fudan University, Shanghai have made perovskite (a calcium titanium oxide mineral) solar cells with a flexible fibre structure, opening up the possibility of weaving them into textiles.
The technique, detailed in the journal Angewandte Chemie, involved continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fibre electrode. Photoactive perovskite materials were incorporated inbetween them through a solution process.
The fibre-shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3 percent, which remained stable on bending. The perovskite solar cell fibres may be woven into electronic textiles for large-scale application by well-developed textile technologies, according to the researchers, making them potentially useable in wearable and portable electronic devices.
Full details can be found in the paper ‘Integrating Perovskite Solar Cells into a Flexible Fiber’ by L. Qiu et al (2014), Angew. Chem. Int. Ed.. doi: 10.1002/anie.201404973
“Green grass just pops out at you from these displays,” says Nelson, who helped create the plastic films that hold the quantum dots in a screen. “We believe this is the most efficient way to get to a high-colour display.”
The QDs (made for 3M by Nanosys in this case) produce specific colours of light based on how big they are. In 3M QDEF displays, the LCD’s white backlight is replaced with a blue one, and a sheet of plastic embedded with QDs that produce red and green light is placed over it. The display combines these three colours to produce all the colors the viewer sees.
3M reveals new quantum dot display material
Protective plastic promises greener grass for longer...
Quantum dots could bring brighter, more vibrant colour to TVs, tablets, phones and other displays, according to Eric Nelson from the company 3M, talking this week at the 248th National Meeting & Exposition of the American Chemical Society (ACS).
Nelson was describing a new technology developed by his company quantum dot enhancement film (QDEF) that makes liquid crystal display (LCD) screens more richly coloured.
146
www.compoundsemiconductor.net Issue VI 2014
One drawback of the dots is that they break down quickly when exposed to water and oxygen in the air. To address this challenge, Nelson helped create the plastic sheathing that protects them. They sandwiched the QDs between two polymer films, with the QDs embedded in an epoxy glue. “The polymer/quantum dot sandwich looks like a piece of plastic film,” says Nelson. Coatings on the film provide further protection and enhance the viewing experience.
Because the QDEF displays need less light, says Nelson, they consume less electricity and help device batteries last longer than other high-colour solutions. He says 3M’s tests have shown that the dots’ heavy metals — many of which are already found in today’s electronics — are entirely sealed inside the film. That means they won’t leach out during the products’ lifetime or as they languish in landfills if the displays aren’t recycled.
3M hopes QDEF technology will compete well with more costly displays like those that use organic light-emitting diodes (OLEDs). Nelson explains that OLEDs produce similarly brilliant colors to the QDEF displays, but they use individual lights to
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160