This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest


The Full-Width Half-Maximum (FWHM) achieved was 36nm with tunable emission from 530 to 550nm. Potential clients are currently evaluating these TQDs.


QMC says its ability to achieve economies of scale with automated production offers supply security and dependable cost forecasting in joint ventures planning very large quantum dot product rollouts.


The company previously stated that capacity could be expanded sufficient to support the entire display industry converted to quantum dot 4K and 8K displays. According to market researcher IHS, demand for QD-LCD displays is projected to jump to 87.3 million units by 2020 as QD prices decrease and a reliable and uniform quantum dot supply is assured for large production runs.


In solar photovoltaics, Solterra Renewable Technologies, a QMC wholly owned subsidiary, calculates that one Solterra Quantum Dot Solar Cells (QDSC) Plant can be scaled up to produce 1000 Megawatts per year of printed solar cells using its own dedicated production of QMC quantum dots.


A Solterra QDSC facility would rely on low CAPEX for both the QD production as well as low startup costs for the solar cell equipment, says the company. Combined automated production of QD and QDSC allow a cost goal of under 12c per kWh, the present estimated residential electricity rate in the US.


Solterra’s goal is to establish regional or national QDSC plants entirely by the private sector, without federal subsidies, and a cost goal of under 12c per kWh.


Sheets of stapled


semiconductors could make ultra thin solar cells


Researchers combine tungsten diselenide with molybdenum disulphide to create ‘designer’ optoelectronic material


Researchers at the Vienna University of Technology have used two ultra-thin layers to create a new semiconductor structure suited for photovoltaic


Tungsten diselenide is a semiconductor which consists of three atomic layers. One layer of tungsten is sandwiched between two layers of selenium atoms. (The image shows the two semiconductor layers in the middle, connected to electrodes on either side).


When light shines on a photoactive material single electrons are removed from their original position. A positively charged hole remains, where the electron used to be. Both the electron and the hole can move freely in the material, but they only contribute to the electrical current when they are kept apart so that they cannot recombine.


To prevent recombination of electrons and holes, metallic electrodes can be used, through which the charge is sucked away - or a second material


Issue VI 2014 www.compoundsemiconductor.net 149 energy conversion.


Several months ago, Marco Furchi, Thomas Mueller, and Andreas Pospischil (pictured l-r) produced an ultra-thin layer of the photoactive crystal tungsten diselenide. Now, they have combined this semiconductor with another layer made of molybdenum disulphide, creating a material that shows potential for a new kind of solar cell technology, they say, that is extremely thin, semi-transparent, and flexible.


Two layers with different functions


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160