This page contains a Flash digital edition of a book.
Solar ♦ news digest


Energy Laboratory (NREL) “Best Research Cell Efficiencies” reference chart.


This certified result bests the previous CdTe record of 20.4 percent conversion efficiency, which was set by First Solar in February of 2014, and represents the seventh substantial update to CdTe record efficiency since 2011. The achievement also places First Solar’s CdTe research cell efficiency above copper indium gallium diselenide based solar cells (CIGS) at 20.9 percent, and well above multicrystalline silicon (mSi), which peaked at 20.4 percent in 2004.


“We have just begun to reveal the true unrealized potential of CdTe PV,” said Raffi Garabedian, First Solar’s Chief Technology Officer. “Our Advanced Research team continues to deliver extraordinary results by creating practical devices capable of commercial scale production. Not only have we have now demonstrated the highest single junction thin film cell on record, but just as important, our record cells are based on the same scalable manufacturing processes and commodity materials that we have proven through years of volume production.”


Garabedian noted that while competing technologies are using increasingly costly materials and cell processes in order to deliver moderate performance gains, First Solar is establishing a rapid path to industry-leading energy densities, while simultaneously improving manufacturing metrics.


“Our significant investment in development of CdTe thin-film technology has enabled a rapid rate of improvement and gives us tremendous confidence in the future,” said Markus Gloeckler, First Solar Vice President for Advanced Research. “We have made outstanding improvements in all aspects of our thin-film solar cells and are aggressively pursuing the commercialization of these advanced technologies in our product.”


At an analyst briefing last March, First Solar presented a technology roadmap anticipating a 22 percent research cell efficiency milestone in 2015. This announcement indicates First Solar is steadily tracking to achieve that goal ahead of schedule.


First Solar has continued to transfer its success in the R&D lab into its commercially produced modules, increasing its average production module


Issue VI 2014 www.compoundsemiconductor.net 109


efficiency to 14 percent in the second quarter of 2014, up 0.5 percent from the first quarter of the year, and up 0.7 percent from FY2013. The company’s lead line was producing modules with 14.1 percent average efficiency at the end of the second quarter of 2014.


Sheets of stapled


semiconductors could make ultra thin solar cells


Researchers combine tungsten diselenide with molybdenum disulphide to create ‘designer’ optoelectronic material


Researchers at the Vienna University of Technology have used two ultra-thin layers to create a new semiconductor structure suited for photovoltaic energy conversion.


Several months ago, Marco Furchi, Thomas Mueller, and Andreas Pospischil (pictured l-r) produced an ultra-thin layer of the photoactive crystal tungsten diselenide. Now, they have combined this semiconductor with another layer made of molybdenum disulphide, creating a material that shows potential for a new kind of solar cell technology, they say, that is extremely thin, semi-transparent, and flexible.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160