Novel Devices ♦ news digest
temperature, at a small forward bias larger than -2V, from a simple metal-AlGaN/GaN Schottky diode. Their findings were published in Applied Physics Letters 105 (2014).
Schottky-drain electrode in an AlGaN/GaN HEMT
The researchers’ goal was to produce electroluminescence (EL) at room temperature from metal-AlGaN/GaN Schottky diodes on a conventional doping-free III-nitride heterostructure suitable for HEMTs. (EL was first discovered in a metal-SiC structure in 1907. EL emissions from Schottky diodes on Si, II-VI, and III-V semiconductor have also been reported by research groups over the last 30 years).
By employing a semi-transparent Schottky-drain electrode in an AlGaN/GaN HEMT, the team succeeded in building a UV high electron mobility light-emitting transistor (HEM-LET) in a relatively straightforward manner. Figure a) below presents the schematic device structure of the device demonstrated in this work.
removed by dilute alkaline solution. Then the semitransparent Schottky metal Ni/Au (5/6 nm) was deposited using an e-beam evaporator. A high electron mobility light-emitting transistor (HEM-LET) with ohmic source and semitransparent Schottky drain was made simultaneously.
Ni/Au (20/200 nm) was used as the gate metal and a SiN x/AlO (15/8 nm) stack insulator used as the gate dielectric for the HEM-LET, in order to single out the Schottky drain. Finally, the device was annealed at 400degC for 10 minutes in N2 ambience.
EL emission at room temperature
The team measured the current- voltage characteristics, and the EL and photoluminescence (PL) spectra. (A 266nm laser was used to excite the AlGaN/GaN heterostructure for the PL measurement).
The team used an AlGaN/GaN heterostructure consisting of a 21nm Al 0.25Ga 0.75 N barrier and 3.8µm GaN buffer, grown by MOCVD on a 4inch p-type S (111) substrate. The heterostructure contained a 2DEG channel of density 1013 mobility 2080cm2
/cm-2 /V-1 s-1 at room temperature.
They defined the ohmic contacts using photolithography and formed them with Ti/Al/Ni/ Au metallisation annealed at 850degC for 30s in N 2 ambience. Remote plasma pretreatment in an atomic-layer-deposition (ALD) machine was used to remove the residual native oxide and nitridise the surface. The passivation and surface protection layer was an AlN/SiN x (4/50nm) stack.
After the Schottky area was defined with photolithography, the SiN x was dry etched by a low-power plasma process and the AlN thin film
With semi-transparent Ni/Au (5/6 nm) Schottky metal, the team reported clearly seeing EL emission from the Ni/Au-Al 0.25Ga 0.75 N/GaN Schottky diode at room temperature when the forward bias is higher than 2.2V. The EL intensity becomes stronger at a higher bias.
and
They found that the EL spectra consisted of not only yellow and blue luminescence but also a narrow GaN band-edge UV component at 3.4eV, similar to the PL spectra of the AlGaN/GaN heterostructure as shown in graph c) above.
Both the EL and PL spectra are from the GaN layer; no emission from the thin AlGaN barrier layer was detected. The yellow/blue is due to radiative transition of electronics from conduction band of a shallow donor to a deep acceptor in the GaN layer. Its relative intensity, compared with GaN band- edge UV emissions decreased with increasing bias/ current or laser excitation intensity in both the LE and PL spectra
The team also experimented with another Schottky Issue VI 2014
www.compoundsemiconductor.net 143
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160