This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


tungsten diselenide. The research was published online this week in Nature Materials.


“Heterojunctions are fundamental elements of electronic and photonic devices,” said senior author Xiaodong Xu, a UW assistant professor of materials science and engineering and of physics. “Our experimental demonstration of such junctions between 2D materials should enable new kinds of transistors, LEDs, nanolasers, and solar cells to be developed for highly integrated electronic and optical circuits within a single atomic plane.”


Collaborators from the electron microscopy centre at the University of Warwick, UK found that all the atoms in both materials formed a single honeycomb lattice structure, without any distortions or discontinuities. This provides the strongest possible link between two single-layer materials, necessary for flexible devices. Within the same family of materials it is feasible that researchers could bond other pairs together in the same way.


different properties, they evaporate and separate at different times automatically. The second material forms around the first triangle that just previously formed. That’s why these lattices are so beautifully connected.”


With a larger furnace, it would be possible to mass-produce sheets of these semiconductor heterostructures, the researchers said. On a small scale, it takes about five minutes to grow the crystals, with up to two hours of heating and cooling time.


“We are very excited about the new science and engineering opportunities provided by these novel structures,” said senior author David Cobden, a UW professor of physics. “In the future, combinations of two-dimensional materials may be integrated together in this way to form all kinds of interesting electronic structures such as in-plane quantum wells and quantum wires, superlattices, fully functioning transistors, and even complete electronic circuits.”


The researchers have already demonstrated that the junction interacts with light much more strongly than the rest of the monolayer, which is encouraging for optoelectric and photonic applications like solar cells.


As seen under an optical microscope, the heterostructures have a triangular shape. The two different monolayer semiconductors can be recognised through their different colours.


The researchers created the junctions in a small furnace at the UW. First, they inserted a powder mixture of the two materials into a chamber heated to 900degC. Hydrogen gas was then passed through the chamber and the evaporated atoms from one of the materials were carried toward a cooler region of the tube and deposited as single- layer crystals in the shape of triangles.


After a while, evaporated atoms from the second material then attached to the edges of the triangle to create a seamless semiconducting heterojunction.


“This is a scalable technique,” said Sanfeng Wu, a UW doctoral student in physics and one of the lead authors. “Because the materials have


142 www.compoundsemiconductor.net Issue VI 2014


Hong Kong team integrates on-chip light source with III- nitride electronics


Approach holds promise for synchronous RF/optical comms and more...


Integrating III-nitride-based light-emitting and electronic control devices would help make more compact optoelectronics systems such as on- chip lighting control, synchronous RF/optical communications, and opto-couplers for power conversion. But attempts to grow LED and HEMT structures on the same substrate have been hampered by the incompatibility of their optimised growth temperatures and by the complexity of integrated devices with different active layers.


Now a team from Hong Kong University of Science and Technology has reported producing GaN band-edge ultraviolet emission at 3.4eV at room


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160