This page contains a Flash digital edition of a book.
INDUSTRY LASERS


of GaAs-based, high-power lasers. Fabrication begins by using MOCVD growth technology to form epitaxial structures on 3-inch GaAs substrates. Processing creates broad-area multi-mode chips featuring separate confinement InGaAs/AlGaAs quantum wells, a lateral output aperture of 100 μm and a 4.1 mm cavity length. By varying the composition of indium in the well, the lasing wavelength can be tuned from 910 nm to 980 nm.


The length of the chip cavity is identical to that of its forerunner, but the near-field and far-field emission patterns have been improved through optimization of the lateral index-guiding step, lateral gain profile, and transverse (epitaxial direction) mode design. These refinements result in a more uniform near-field pattern with fewer high-intensity spikes – this means better long-term facet reliability.


For burn-in and test, the chip is bonded to an expansion-matched ceramic submount with AuSn solder and clamped to a copper carrier. Comparison at the chip-on-submount level shows that this latest chip has less thermal rollover than its predecessor, and can deliver a CW output in excess of 20 W at 25 °C (see Figure 1). Peak power conversion efficiency is greater than 60 percent.


We have carried out extensive reliability testing of our latest chip design. Only 10 percent of the tested population failed across seven highly- accelerated life test cell conditions, making it challenging to employ a reliability model. However, we have performed reliability analysis with a Weibull model, which uses acceleration factors based on diode junction temperature and optical power (see Figure 2). This study suggests that if our lasers were operated continuously for ten years, the expected failure rate would be below 4 percent.


Multiple emitters To increase the output power of a source, laser chips can be combined to form a multi-emitter package (see Figure 3). We have done this, stacking chips in the vertical direction with a staircase-like layout, in two rows, polarization combined, and focusing their output into the fibre.


The result is a source that can deliver a continuous-wave output of 140 W from a 106 μm/0.22 NA fibre – and 95 percent of this power is contained within 0.15 NA. Note that power conversion efficiency, the portion of terminal electrical power that is converted to useful light, is almost 50 percent at 140 W.


Figure 3. (a) Optical power versus drive current at 35 °C case temperature for the multi-emitter, fibre-coupled package. The laser is rated at 140 W and achieves nearly 50 percent power conversion efficiency at the rated power. (b) Optical power reading at 10 A from 1,000 units assembled. Typical optical power is about 120 W


Figure 4. Fibre laser power versus pump diode current for 1-, 2-, and 3-module combined engines


Copyright Compound Semiconductor Issue VI 2014 www.compoundsemiconductor.net 57


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160