news digest ♦ LEDs
These are both matching pairs designated for small- middle (5 - 32”) size optical touch panel applications. Due to the same low height of 1.2 mm, the slit for the touch panel’s optical frame can be kept very small, thus allowing the device to be slimmer and have a higher quality appearance.
Samples are available upon request and are now in mass production.
Going green by uniting OLEDs & CdSe QDs
Researchers have inexpensively and precisely applied cadmium selenide quantum dots onto OLEDs using inkjet printing to produce QD-LEDs
For home lighting applications, organic light emitting diodes (OLEDs) hold the promise of being both environmentally friendly and versatile.
Although not as efficient as regular LEDs, which are based on III-nitrides, they offer a wider range of material choices and are more energy efficient than traditional lights. OLEDs can also be applied to flexible surfaces, which may lead to lights or television displays that can be rolled up and stowed in a pocket.
A promising line of research involves combining the OLEDs with inorganic quantum dots, tiny semiconductor crystals that emit different colours of light depending on their size. These “hybrid” OLEDs, also called quantum dot LEDs (QD-LEDs), increase the efficiency of the light- emitting devices and also increase the range of colours that can be produced.
But commercially manufacturing this promising green technology is still difficult and costly.
To make OLEDs more cheaply and easily, researchers from the University of Louisville in Kentucky are developing new materials and production methods using modified quantum dots and inkjet printing.
According to Delaina Amos, professor at the University of Louisville and principal investigator of the team’s efforts, expense of materials and manufacturing processes has been a major barrier to using OLEDs in everyday lighting devices.
To inexpensively apply the quantum dots to their hybrid devices, the Louisville researchers use inkjet printing, popular in recent years as a way to spray quantum dots and OLED materials onto a surface with great precision.
80
www.compoundsemiconductor.net July 2013
Novel cadmium selenide (CdSe) quantum dots with ligand enhancement chemistry. The vials on the left contain quantum dots; the vial on the right contains solvent without quantum dots. (Credit: Delaina Amos.)
In addition to their higher efficiency, wider range of colours, and ability to be applied to flexible surfaces, Amos’ QD-LEDs also use low-toxicity materials, making them potentially better for the environment.
“Ultimately we want to have low cost, low toxicity, and the ability to make flexible devices,” Amos says. The team has recently demonstrated small working devices, and Amos adds that she hopes to have larger devices within the next several months.
But unlike other groups experimenting with this method, Amos’ team has focused on adapting the inkjet printing technique for use in a commercial setting, in which mass production minimises expense and translates to affordable off-the-shelf products. “We are currently working at small scale, typically 1 inch by 1 inch for the OLEDs,” Amos says. “The process can be scaled up from here, probably to 6 inches by 6 inches and larger.”
“There’s a reason you don’t see OLED lights on sale at the hardware store,” says Amos, though she adds that they do find uses in small devices such as cameras, photo frames, and cell phone displays.
To bring their QD-LEDs closer to becoming market-ready as household lighting appliances, Amos and her team have been synthesising new, less expensive and more environmentally friendly quantum dots.
The team has also modified the interfaces between the quantum dots and other layers of the OLED to improve the efficiency with which electrons are transferred, allowing them to produce more efficient light in the visible spectrum.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179