This page contains a Flash digital edition of a book.
TECHNOLOGY LEDs


France. For simplicity, we assume that all expelled carriers are hurled out of the entire device [4] – this is modelled by assuming that each Auger event in the quantum well contributes one carrier to the leakage current (Figure 3), which we refer to as Auger leakage.


One of the consequences of this assumption is that Auger effects increase the rate of carrier removal from the well by 50 percent. What’s more, the expelled carriers re-appear as a leakage current component. Add up these two loss channels and it seems that the impact of the Auger effect is increased by a factor of two. Or, to put it another way, once Auger leakage is included, the Auger coefficient can be halved to match measurement data.


Lab Fab ad 28/6/11 12:16 Page 1


Impact of Auger leakage We have built these Auger-related effects into a computer model, which is used to fit real data of a GaN-based, green, single-quantum-well LED [5]. Simulation parameters are determined with Auger leakage turned on, and for comparison, we have also turned Auger leakage off while keeping all other parameters constant (see Figure 4). In both cases, the overlap integral is used in the calculation of Auger recombination in the quantum well. It is worth


noting that when Auger leakage is turned off, the IQE maximum exceeds the corresponding measurement data by 7 percent. To match the experimental data in this case, the Auger coefficient would need to be increased by a factor of two. In other words, with our model a smaller Auger coefficient is needed to explain measurement data, and ultimately the gap between calculated and experimentally extracted Auger coefficients may be significantly smaller than many have thought it to be. The same applies to blue GaN LEDs. So it may be that we are on the right track to uncovering the cause of droop, if we search for its origin by considering both the Auger effect and carrier leakage.


© 2013 Angel Business Communications. Permission required.


References [1] J. Iveland et. al. Phys. Rev. Lett. 11 177406 (2013) [2] J. Piprek et. al. Phys. Status Solidi A 207 2217 (2010) [3] M. Deppner et. al. Proc. SPIE 8619, Physics and Simulation of Optoelectronic Devices XXI, 86191J (2013)


[4] Deppner et. al. Phys. Status Solidi RRL 6 418–420 (2012) [5] Laubsch et. al. IEEE Transactions on Electron Devices 57 79 (2010)


Submit your Lab & Fab article


Research is the foundation for the growth of the Compound Semiconductor industry.


If you want to highlight the important breakthroughs that you make, submit your latest research stories to SuWestwater@angelbc.co.uk


It is imperative that Compound Semiconductor remains a timely resource for this industry, so we


are only interested in highlighting very recent work reported in academic papers.


Therefore, please only consider writing a short piece highlighting your work if you have a


journal paper that has been accepted and about to appear in press, or a paper that has been published within the last month.


For further details of what we are looking for, see www.compoundsemiconductor.net/csc/labfab-news.php


July 2013 www.compoundsemiconductor.net 49


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179