This page contains a Flash digital edition of a book.
NEWS REVIEW


In-Situ monitoring speeds up InP nanowire production


NANOWIRES, sometimes called nanorods, are becoming more and more attractive for next generation LED and solar cell applications.


One of the reasons is the fact that epitaxial III-V nanowire arrays combine 1-dimensional electronic states with additional degrees of freedom for strain relaxation and resonant electromagnetic interaction.


The most critical parameters for nanowires’ optical response are their length and diameter. Usually, time consuming and destructive ex- situ methods like scanning electron microscopy (SEM) are used for characterisation before further processing.


But now, LayTec and the Nanometre Structure Consortium at Lund University in Sweden have jointly developed a solution for real-time quantitative monitoring of III-V nanowire growth.


The team of Lars Samuelson used LayTec’s spectroscopic in- situ reflectometer EpiR to monitor nanowire epitaxy in an AIXTRON 200/4 reactor. The image below shows the LayTec software display at the end of the MOCVD run where InP shells were grown on InP core nanowires.


The data of previous ex-situ analysis by SEM and spectroscopic reflectance were used by Nicklas Anttu of Lund University to develop numerical algorithms for deduction of the average length and


diameters of the growing nanowire ensemble. This work is described in more detail in the paper, “Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples,” by N. Anttu et al, in Nano Letters, 2013, 13 (6), pp 2662 - 2667. DOI: 10.1021/nl400811q


Together with these algorithms, the in- situ spectroscopic measurements by EpiR provide information on the evolution of nanowire length and diameter during growth.


EpiR enables effective process optimisation, speeds up development and paves the way to future process transfer for industrial nanowire growth. LayTec believes in-situ metrology will be a must in nanowire applications in the near future.


GaN microelectronics device market booming


WHILE MILITARY APPLICATIONS continue to drive the GaN device market, commercial applications have emerged that will help fuel rapid market growth. The recently released Strategy Analytics GaAs and Compound Semiconductor Technologies Service (GaAs) Forecast and Outlook, “GaN MIcroelectronics Market Update: 2012-2017”, concludes that the overall GaN microelectronics device market closed 2012 with revenues of slightly less than $100 million.


The report also forecasts that commercial RF and power management applications will begin shipping in volume during the


forecast period and this activity will push the overall market to slightly more than $334 million by 2017.


“The GaN device market has been “about to take off” for a number of years,” notes Eric Higham, Director of the Strategy Analytics GaAs and Compound Semiconductor Technologies Service (GaAs). He continues, “Based on our most recent research, it appears there are segments of the commercial market, like CATV and wireless infrastructure that are seeing higher volumes, but the broad commercial market is still not quite into the


10 www.compoundsemiconductor.net July 2013


production phase. We do anticipate seeing more of these commercial segments contribute over the period and this will be the driver for strong revenue growth.”


Asif Anwar, Director in the Strategy Analytics Strategic Technologies Practice (STP) adds, “Despite the interest and growth in commercial applications for GaN, military applications will continue to account for more than half of the GaN device revenue in 2017. The performance benefits of using GaN devices in military applications are clear and this will keep driving GaN usage.”


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179