This page contains a Flash digital edition of a book.
news digest ♦ Telecoms


IBM unveils highly integrated SiGe millimetre-wave transceiver


The silicon germanium device is designed for mobile communications and radar imaging applications. The solution is claimed to seamlessly bring together 4 integrated chips and 64 antennas in a single package


IBM scientists have achieved a milestone in creating a phased-array transceiver that contains all of the millimetre-wave components necessary for both high data-rate communications and advanced-resolution radar imaging applications.


The SiGe BiCMOS prototype takes advantage of under- utilised short-wavelength frequency.


The newly demonstrated integrated circuits (ICs) tackle data bottleneck issues for mobile communications applications and allow radar-imaging technology to be scaled down to the size of a computer laptop.


Advanced radio frequency integration has been a key driver in the explosive growth of mobile device capability and sophistication.


Millimetre-wave bandwidth has the ability to support Gb/s wireless communications, dramatically expanding opportunities for mobile backhaul, small cell infrastructure, and data center overlay network deployment.


The frequency range of the ICs is well suited for high- resolution radar imaging applications due to its short wavelength, relatively low atmospheric attenuation, and ability to penetrate debris. The ICs enable radar technology to be scaled down, giving pilots the ability to penetrate fog, dust and other vision impairing obstructions.


“This transceiver presents the highest level of integration achieved so far in a silicon-based solution for millimetre-wave frequency applications,” says Alberto Valdes-Garcia, IBM Research, Communications and Computation Subsystem Group. “It is a key step toward phased-array systems of the future that are scalable, low-volume, light-weight, and low-cost.”


About the Integrated Circuit and Scalable Array Assembly Technology


The packaged transceiver operates at frequencies in the range of 90 - 94GHz and is implemented as a unit tile, integrating four phased array ICs and 64 dual-polarised antennas. By tiling packages next to one another on a


112 www.compoundsemiconductor.net July 2013


circuit board, scalable phased arrays of large aperture can be created while maintaining uniform antenna element spacing. The beam - forming capabilities enabled by hundreds of antenna elements will allow for communications and radar imaging applications that will extend over a range of kilometres.


Each of the four phased-array ICs in a tile integrates 32 receive and 16 transmit elements with dual outputs to support 16 dual polarised antennas. Multiple operating modes are supported, including the simultaneous reception of horizontal and vertical polarisations. Fabricated using an advanced IBM SiGe semiconductor process, the ICs also integrate frequency synthesis and conversion as well as digital control functions.


The complete scalable solution, which includes antennas, packaging, and transceiver ICs, transforms signals between millimetre-wave and baseband, all in a form factor smaller than an American nickel.


Mobile Back-Haul Technology


Mobile service providers have started to alleviate backhaul congestion issues by using E-band wireless links. E-Band spectrum, allocated by the FCC for point- to-point communications, covers frequencies in the range of 71 - 76 GHz, 81 - 86 GHz and 92 - 95 GHz, and enables wireless data transfer at very high rates. The atmospheric attenuation in this band is relatively low, making it well suited for supporting long-range communications links.


Today’s E-band solutions consist of multi-chip modules and bulky mechanically aligned antennas. The newly developed compact scalable phased array solution provides electronic beam steering and the bandwidth to support Gb/s wireless communications.


Millimetre-wave Radar and Imaging Capabilities


Millimetre-wave spans 30 GHz to 300 GHz on the electromagnetic spectrum, 10 to 100 times higher than the frequencies used for mobile phones and Wi-Fi. Frequencies in the range of 90 - 94GHz are well suited for short and long range, high-resolution radar imaging.


Weather, debris and other vision impairing obstructions often leave aircraft pilots helpless, but 94GHz radar imaging technology could alleviate this problem. What’s more, the design’s support for two antenna polarisations - with minimal increase in footprint - provides a further advantage while navigating through fog and rain.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179