This page contains a Flash digital edition of a book.
INDUSTRY CPV


Figure 7. Transmission electron microscopy image of the 2 µm-thick InGaAs layer grown by MOCVD on Translucent virtual-germanium template


Figure 6. Growth of 5 µm of germanium ‘on-silicon’ does not exceed a wafer bow of 30 µm, allowing this meet the specification for silicon lines


1–2 percent indium concentration (see Figure 7). Secondary ion mass spectrometry analysis confirms the stability of the virtual germanium/silicon substrate, and the absence of diffusion into III-V material. Simple, trial solar cell devices have been produced with this platform, and they exhibit acceptable fill factors and open-circuit voltages (see figure 8).


When these vertically integrated devices are formed that involve direct growth on silicon, the germanium layer acts as one of the junctions, while the silicon wafer is used as the bottom contact layer. In this type of device, p-type doping must be added during the epitaxial process. This is possible: Initial trial runs show no adverse interactions between boron, germanium and tin, and template wafers have been formed with doping levels of 5 x 1017 3 x 1018


cm-3 cm-3


in the structure. Goals for the future


Our challenging journey has focused on designing a 1eV layer into a sub cell structure that is silicon-


References 1. M. Lebby et. al. Compound Semiconductor July 2012, p 37 2. S. Ringel et. al. MRS Proceedings 836 “III-V multijunction materials and solar cells on engineered SiGe/Si substrates (2004) 3. R. Hinige et. al. Semiconductor Science and Technology 21 775 (2006) 4. S. Thomas et. al. IEEE Electron Device Letters 26 428 (2005) 5. NREL reference (http://sunlab.site.uottawa.ca/pdf/whitepapers/ HiEfficMjSc-CurrStatus&FuturePotential.pdf


6. PRN Newswire, 15th October 2012 “Solar Junction Breaks it’s own world record” 7. R. Soref et. al. Mat.Res.Soc.Symp. Bol 958 (2007) 0958-L01-08 “Advances in SiGeSn/Ge Technology”


54 www.compoundsemiconductor.net July 2013


Figure 8. Current-voltage characteristics of a single junction solar cell grown on both germanium templates and bulk germanium


to , which is an ideal range for base layers


© 2013 Angel Business Communications. Permission required.


based, and includes group IV materials and III-Vs. Significant strides in this direction have already been made – such as forming templates based on thick Ge(Sn) layers lattice-matched to silicon, and the growth of III-Vs on top of templates to form photovoltaic structures – but there is much more to do. This includes incorporating doped junctions, multi-junction structures, and SiGeSn films for the 1eV layer to access ultra-high efficiency devices.


While much of the focus so far has been on interface engineering, lattice engineering, and bandgap engineering, this must now be allied to continual optimization of crystal growth and device structural design, as this multi-pronged effort will hold the key to improving results very quickly in the coming months.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179