This page contains a Flash digital edition of a book.
Telecoms ♦ news digest


Since its introduction in 1995, IBM’s SiGe semiconductor technology has helped spur a revolution in radio frequency (RF) performance, enabling engineers to develop breakthrough devices such as satellite global positioning systems, WiFi radios and high speed optical links.


Image showing a 3D rendering of a stable manganese gallium nitride surface structure (Credit: A.R. Smith, Ohio University)


Valeria Ferrari of the Centro Atómico Constituyentes points out her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.


Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.


Further details of this work have been published in the paper, “ Manganese 3×3 and √3×√3-R30∘structures and structural phase transition on w-GaN(0001̅ ) studied by scanning tunneling microscopy and first-principles theory,» by A. V. Chinchore et al in Physical Review B, 87, 165426 (2013).


DOI: 10.1103/PhysRevB.87.165426


This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (STM studies of nanoscale spintronic nitride systems), the National Science Foundation (advancing nanospintronics through international collaboration), CONICET, ANPCyT and Spanish MICINN. The Ohio Supercomputing Centre provided computer time.


IBM SiGe wireless chips clear data bottlenecks


The company’s latest silicon-germanium chip-making process enables data to flow through network backbones in applications such as Wi-Fi, LTE cellular, wireless backhaul and high speed optical communications


IBM has launched the fifth generation of semiconductor technology specialised for high performance communications.


IBM’s new “9HP” SiGe technology continues to put advanced capability in the hands of engineers who design chips for LTE cellular base stations, millimetre- wave wireless communication links, and next generation short and long-haul optical communications. Outside of communications, 9HP performance will advance the state of the art in other applications such as high- performance test equipment, automotive radar and security imaging.


“Silicon-germanium is one of the key technologies that have enabled wireless operators to keep up with the explosive growth in data traffic generated from mobile handsets,” says David Harame, IBM Fellow. “Before SiGe, the high-performance chips used in base stations and optical links were built using expensive, esoteric processes. SiGe provides the necessary performance as well as integration and cost savings via its CMOS base.”


Over the years, a number of leading technology companies have come to rely on the benefits and advantages of SiGe, working closely with IBM to develop and refine new versions of the chip-making process. IBM believes that open collaboration among companies will drive future breakthrough innovation in semiconductors.


“As early adopters of IBM’s SiGe technology, Semtech has consistently pushed the envelope on what can be achieved in high-speed wired and wireless communications systems and in high performance analogue devices,” notes Charles Harper, Senior Vice President of Semtech’s Systems Innovation Group. “With today’s technology, Semtech is a leader in 40Gbps and 100Gbps Communications Systems and with IBM’s latest SiGe technology we believe we can emerge as a leader in several new analogue segments where performance, integration and power are critical requirements.”


“Our long collaboration with IBM on SiGe technology has enabled Tektronix to break new barriers on what can be achieved in high-fidelity, high-bandwidth oscilloscopes,” continues Kevin Ilcisin, chief technology officer, Tektronix. “We utilised IBM’s SiGe 9HP for our patent-pending asynchronous interleaving approach, and expect to break new ground by providing customers bandwidth capabilities of 70 GHz and beyond while significantly improving our signal-to-noise ratio.”


IBM says 9HP will be the first SiGe technology in the industry featuring the density of 90nm CMOS which will enable the highest level of integration in a fully


July 2013 www.compoundsemiconductor.net 103


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179