NEWS ANALYSIS
CMOS poised for power amplifier takeover
As Nujira unveils its highest performing envelope tracking chip for mobile handsets yet, vice president Jeremy Hendy asserts the technology is ready for GaAs and CMOS power amplifiers.
In the last few weeks UK-based Nujira has broken its own world record for envelope tracking (ET) linearity on a GaAs power amplifier (PA) and unveiled its highest performing ET modulator yet, primarily designed for a GaAs PA.
The double-whammy confirms that 4G smartphone volume shipments are almost upon us, but this doesn’t signal pay day for manufacturers of GaAs PAs.
“Envelope tracking gives manufacturers of CMOS power amplifiers an opportunity to get a grip on the high-end smart phone market,” says Jeremy Hendy, vice president of sales and marketing at Nujira. “I’m not sure what percentage of power amplifiers will be CMOS in three to five years time, but my guess it will be a lot and could well be 50 percent.”
Nujira has spent just over a decade developing its envelope tracking power supply technique to boost the efficiency and linearity of PAs for RF front ends. Device makers can replace the normal DC-DC converter with a power modulator that varies the supply voltage to the PA to track the amplitude of the transmitted RF signal, keeping it in compression across the entire modulation cycle, not just the peaks.
This not only boosts PA performance but enables full-power transmission from handsets, a huge bonus for LTE network operators desperate to expand the coverage area of a base station. But while envelope tracking can take GaAs PAs to linearities that CMOS alternatives can only dream of, handsets do not
demand this level of performance, not even 4G LTE devices. What’s more, Nujira’s ET modulators now push CMOS PA performances to 4G requirements, as laboratory tests on prototype devices showed earlier this year. And according to Hendy, ET technology is just as easy to use with CMOS as it is GaAs.
“There’s no real difference in how you use envelope tracking for CMOS compared to GaAs and we’ve been saying for a couple of years now that this could be key to unlock the performance of CMOS in high-end smart phones,” says Hendy. “The technology levels the playing field as you are no longer reliant on the inherent linearity of the transistor.”
In response, GaAs manufacturers have continued to buy CMOS PA manufacturers. On the tail of RFMD acquiring Amalfi, Avago bought 3G CMOS PA pioneer, Javelin Semiconductor in April, while Murata recently partnered with CMOS RFIC company, Peregrine Semiconductor, to develop CMOS PAs.
And as the GaAs heavyweights build up CMOS technical reserves, these businesses are still a step-ahead on optimising PA design to make the most of envelope tracking. “A lot of CMOS power amplifier companies tried to linearise the power amplifier through clever circuit design... but they went off in the wrong direction for using envelope tracking,” says Hendy. “We’re now seeing the first GaAs vendors really get to grips with designing a good envelope tracking GaAs power amplifier.”
20
www.compoundsemiconductor.net July 2013
But the CMOS businesses aren’t hanging around, as evidenced by Qualcomm’s RF360, the first CMOS PA with ET, released earlier this year.
As Hendy highlights, this GaAs-based multi-band, multi-mode PA alternative indicates CMOS PA manufacturers are certainly “thinking about the two in parallel”. Indeed, some industry players anticipate a high-tier handset containing a Qualcomm CMOS PA to surface early next year. But will other chip-set
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179