This page contains a Flash digital edition of a book.
Solar ♦ news digest


The work was done at NREL as part of the DOE’s Foundation Program to Advance Cell Efficiency (F-PACE). This is a project of the department’s SunShot Initiative that aims to lower the cost of solar energy to a point at which it is competitive with other sources including fossil fuels.


At the beginning of the F-PACE project, which aims to produce a 48 percent efficient concentrator cell, NREL’s best single-junction GaAs solar cell was 25.7 percent efficient.


The firm believes this efficiency has been improved upon by other labs over the years: Alta Devices set a series of records, increasing the GaAs record efficiency from 26.4 percent in 2010 to 28.8 percent in 2012. Alta’s then-record two-junction 30.8 percent efficient cell was achieved just two months ago.


The new record may not last long either, but “it brings us one step closer to the 48 percent milestone,” says NREL Principal Scientist Sarah Kurtz, who leads the F-PACE project in NREL’s National Centre for Photovoltaics.


Kurtz adds, “This joint project with the University of California, Berkeley and Spectrolab has provided us the opportunity to look at these near-perfect cells in different ways. Myles Steiner, John Geisz, Iván García and the III-V multijunction PV group have implemented new approaches providing a substantial improvement over NREL’s previous results.”


“Historically, scientists have bumped up the performance of multijunction cells by gradually improving the material quality and the internal electrical properties of the junctions - and by optimizing variables such as the bandgaps and the layer thicknesses,” NREL Scientist Myles Steiner continues.


But internal optics plays an underappreciated role in high-quality cells that use materials from the third and fifth columns of the periodic tables - the III-V cells. “The scientific goal of this project is to understand and harness the internal optics,” Steiner adds.


When an electron-hole pair recombines, a photon can be produced, and if that photon escapes the cell, luminescence is observed - that is the mechanism by which light-emitting diodes work. In traditional single- junction GaAs cells, however, most of the photons are simply absorbed in the cell’s substrate and are lost.


With a more optimal cell design, the photons can be re- absorbed within the solar cell to create new electron-hole pairs, leading to an increase in voltage and conversion efficiency. In a multijunction cell, the photons can also couple to a lower bandgap junction, generating additional current, a process known as luminescent coupling.


The NREL researchers improved the cell’s efficiency by enhancing the photon recycling in the lower, gallium- arsenide junction by using a gold back contact to reflect photons back into the cell, and by allowing a significant fraction of the luminescence from the upper, GaInP junction to couple into the GaAs junction. Both the open-circuit voltage and the short-circuit current were increased.


Silicon solar cells now dominate the world PV market, but researchers see opportunities for new materials. High-efficiency concentrator cells bolstered by lenses that magnify the power of the sun are attracting interest from utilities because the modules have demonstrated efficiencies well over 30 percent. And there may be commercial opportunities for one-sun or low- concentration III-V cells if growth rates can be increased and costs reduced.


The same cell should work well when lenses are added to multiply the sun’s power. “We expect to observe similar enhancements of the solar cell characteristics when measured under concentrated illumination,” Steiner concludes.


NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.


Energizer and Ascent Solar to deliver 13 million hours of light


Using CIGS technology, the companies will unite to brighten up life for families living in the dark


According to the World Energy Outlook, International Energy Agency, every day as the sun sets around the world, 1.3 billion people without electricity either live in darkness or expose their families to the hazards of kerosene lighting.


This year Energizer and Ascent Solar will be changing that scene for many rural families as they team up to donate 13 million hours of solar light working with the global non profit One Million Lights.


Energizer chose Ascent Solar Technologies to be the solar panel provider for the donated Energizer lanterns and lights because of Ascent’s award-winning, flexible thin-film technology and interest in using their transformational technology to benefit families in


July 2013 www.compoundsemiconductor.net 137


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179