This page contains a Flash digital edition of a book.
Solar ♦ news digest


Emcore reveals 1550nm and 1310nm InGaAsP DFB laser modules


The firm has launched its indium gallium arsenide phosphide on InP devices for wireless and distributed antenna system applications


Emcore Corporation, a provider of compound semiconductor-based components and subsystems for the fibre optics and solar power markets, has introduced two new Distributed Feedback (DFB) laser modules.


The new InGaAsP 1764 1550nm C-Band DWDM and 1615 1310nm lasers are designed for analogue wireless and Distributed Antenna System (DAS) applications.


adaptation of our highly-linear DFB laser technology for specialised wireless and DAS applications,” says Jaime Reloj, Vice President of Business Development for Emcore.


“Wireless systems providers are building systems in subway tunnels, massive stadiums, high-speed trains and cruise ships. Our new DFB lasers for wireless applications integrate extremely well into these systems, enhancing bandwidth to help enable the delivery of consistent, reliable WiFi signals in areas where interference is high, or signals are normally weak,” continues Reloj.


All Emcore lasers utilise the highly-linear, directly- modulated DFB technology to drive the wide-scale deployment of fibre optics in CATV networks, satellite earth stations and mobile phone antenna sites.


Emcore’s 1764 and 1615 DFB lasers extend that heritage of performance and reliability to today’s demanding DAS applications and are compatible with the 4G LTE (Long-Term Evolution) standard for wireless high-speed data communications over mobile devices.


DFB laser module


The increasing demands on wireless networks from social media, texting, email, and uploading and downloading of applications, music, videos and photos is creating greater and greater need for deployment of cost- effective, integrated wireless DAS systems.


Both the 1764 and 1615 Series laser modules are designed, tested and optimised specifically to support highly-linearised wireless applications. These lasers are matched to 50 Ohm systems typical of wireless networks and have a wide operating temperature range of -40oC to +85oC for reliable performance in harsh node environments and narrow transmitter designs. Both models have bandwidth up to 2.7 GHz.


The 1764 1550 nm C-Band DWDM module features low adiabatic chirp to maximise signal quality over both short and long fibre lengths. The laser’s superior linearity minimises degradation of the broadcast signals caused by distortions and non-linear effects. The 1764 is available in all C-Band ITU grid wavelengths. The 1615 1310 nm DFB module also delivers superior linearity and supports fiber lengths up to 10 km without dispersion issues.


“We are seeing a growing market opportunity for July 2013 www.compoundsemiconductor.net 127


Plasma-Therm Korean workshop addresses multiple semiconductor topics


Workshop attendees came from disciplines as diverse as LEDs, power, photonics, nanotechnology and MEMS participated in the full day event


Plasma-Therm’s advanced plasma processing workshop, held at KANC (Korea Advanced Nano Fab Centre), attracted nearly 100 engineers and researchers from 25 companies and institutes.


Topics spanned the fundamental and advanced technology used in semiconductor device fabrication, materials research, and nanotechnology.


Plasma-Therm, a semiconductor plasma processing equipment supplier, has held more than a dozen one and two day workshops at prominent institutions in Singapore, United States, Sweden, China, and Israel during the last year.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179