This page contains a Flash digital edition of a book.
Industry: SiC power electronics


Figure 6: The external gate capacitance, CGP (c) and device energy losses


, impacts: (a) the peak gate current, IG,pk


; (b) device turn-on tr


and turn-off tf


times;


parasitic inductances in the gate drive circuit. One good remedy is to place a low-inductance resistor in series with the gate capacitance.


Another variable is the gate driver output voltage, which impacts SJT performance. This voltage must be high enough to bias the SJT gate-source junction on – it has a built-in voltage of about 2.8V – and supply the steady state gate current that follows the gate current peak. There are no trade- offs associated with increasing the voltage, which leads to a nearly linear decrease in total energy and rise and fall times (see Figure 7). However, using an excessively high gate driver output voltage is not to be recommended, because this can be a large contributor to gate driver loss and steady state driver losses. A superior solution, called a 2-level driver, is provided by Rabkowski et. al. (see further reading). This uses two current levels to drive SJTs – one during the transients, and another during the steady state operation of these devices.


Figure 8: Gate driver dependent system power loss as a function of frequency for a fixed duty cycle of D = 0.7. A 1-level gate driver is as shown in Figure 2. A 2-level driver circuit uses two gate-driver ICs, supplying different currents during transients and steady-state operation. Note that the SJT conduction loss component is not considered here


When we drive our 1200 V/6 A SJT with a judicious choice of gate driver output voltage and gate capacitance and resistance values, we obtain very low power losses. Using a duty cycle of 0.7 and a frequency of 500 kHz, the steady state loss for the driver is 3.85 W, while the switching losses for the driver and SJT are 0.54 W and 45.6 W, respectively. These switching losses are frequency dependent, and dominate below 70 kHz (see Figure 8).


Figure 7: A higher gate voltage reduces transition times and energy losses


Further reading D. Veereddy et. al. Bodo´s Power Systems, pp. 36–38 Oct-2011. S. Sundaresan et. al. Power Electronics Technology, pp. 21–24 Nov- 2011. “IXD_614 Low-Side Driver Datasheet.” IXYS Inc. http://www.ixysic.com/ home/pdfs.nsf/www/IXD_614.pdf/$file/IXD_614.pdf J. Rabkowski et. al. Power Electronics, IEEE Transactions on 27 2633 (2012) “GA06JT12-247 Datasheet.” GeneSiC Semiconductor Inc. http://www.genesicsemi.com /index.php/sic-products/SJT


44 www.compoundsemiconductor.net July 2013


The discussion provided here illustrates that replacing silicon IGBTs with SiC switches may not always give engineers of power circuits the ease of use that they may have anticipated, due to the drive requirements of particular classes of this wide bandgap device. However, our measurements show that one type of device, our SJT, can work very well with a conventional gate drive. Its strengths include fast switching speeds and ultra-low losses, and it is not plagued with many of the drawbacks of other SiC transistors and bipolar silicon devices.


© 2013 Angel Business Communications. Permission required.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179