This page contains a Flash digital edition of a book.
LEDs ♦ news digest


caused for example by changes in the power supply frequency. This ensures that the display backlighting remains constant.


No crosstalk with the proximity sensor


Crosstalk – an effect in which the emitted infrared light is reflected by the smartphone casing directly onto the receiver – is eliminated by the SFH 7776 in the component itself. Designers no longer need to provide separate optical barriers between the IRED and the detector, which makes it much easier to create robust, uncomplicated solutions for different setups.


Since the SFH 7776 covers the complete working range from 0 to 16 mm it would even react to direct contact (“zero distance detection”). The touch function of the display is therefore reliably deactivated even in marginal situations.


“Overall, the SFH 7776 overcomes various challenges in terms of proximity and ambient light detection in the component itself, so designers can integrate the product in smartphones relatively easily”, adds Dirk Sossenheimer.


Technical data SFH 7776: Dimensions 4 x 2.1 x 1.35 mm


Current draw in standby mode 0.8 μA Sensitivity of the ambient light signal


0.002 to 68,000


lx Working distance of proximity sensor max. 16 cm


Hitachi Cable launching GaN template for LEDs


At CS Mantech 2013, Hitachi Cable will present its gallium nitride based templates grown on sapphire


Hitachi Cable has developed a new mass-production technology for GaN-templates as shown in Figures 1 and 2 below.


All these crystal layers are produced by the MOVPE processes. The MOVPE method is suitable for growing active layers which require atomic-level control of the film thickness.


Meanwhile, a disadvantage of this method is that it takes a long time to grow a high-quality and thick n-type GaN layer. White LED epiwafers can be grown about once or twice a day at the most, and thus there is a need for a high-efficiency production method.


To solve this problem, Hitachi Cable developed a GaN- template used as a base substrate for growth in the MOVPE method.


The process allows high-quality GaN single-crystal thin film to be grown on a sapphire substrate and the company plans to start selling these templates.


The GaN template consists of an n-type GaN layer grown on a sapphire substrate. Using a GaN-template means


June 2013 ww.compoundsemiconductor.net 87


Therefore, this product is expected to become an effective solution to improve the position of white LED manufacturers in the industry, where there is severe competition.


The demand for white LEDs is rapidly expanding and they have come to be used in backlight unit in liquid crystal displays (LCDs) and ordinary lighting devices in recent years thanks to their energy efficiency and long service life.


The structure of an white LED epiwafer consists of a thin active layer and a p-type GaN layer with a total thickness of about 1μm over an n-type GaN layer with a thickness of about 10μm, grown on a sapphire substrate as shown in Figure 3 below.


Using this product as a base substrate for an epitaxial wafer for white LEDs the company claims it makes it possible to drastically improve productivity of white LED epiwafers and the LED properties.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191