This page contains a Flash digital edition of a book.
LEDs ♦ news digest less than 10% percent of world production in 2011.


“Leadership in innovation is key to developing a sustainable advantage for European industry and we need to build on the scientific excellence in Europe to turn great ideas into globally competitive technologies and related manufacturing,” comments Carlo Bozotti, President and Chief Executive Officer of STMicroelectronics.


“With traditional strengths in analogue and power as well as more recent innovations in technologies, companies in Europe have the capability to continue to lead the development of the next wave of electronic products. The actions outlined in the Commission’s Communication demonstrate a clear commitment to Europe’s future,” adds Bozotti.


Hendrik Abma, Director-General of ESIA, says, “ESIA welcomes the ambition and vision of the European Commission’s strategy. ESIA has consistently underlined the importance of the European semiconductor industry to the competitiveness and vitality of the European economy, as well as to tackling the grand societal challenges, such as energy efficiency and aging populations.”


ESIA looks forward to the full implementation of the European Commission’s strategy for micro- and nanoelectronic components and systems. ESIA is fully aware that the strategy’s successful execution requires significant alignments among all stakeholders.


New family of tiny crystals glow bright in LED lights


Scientists are using X-ray diffraction to further understand crystals that could improve warm-white LED performance


Minuscule crystals that glow different colours may be the missing ingredient for white LED lighting that illuminates homes and offices as effectively as natural sunlight.


LEDs offer substantial energy savings over incandescent and fluorescent lights and are easily produced in single colours such as red or green commonly used in traffic lights or children’s toys.


Developing an LED that emits a broad spectrum of warm white light on par with sunlight has proven tricky. However. LEDs, which produce light by passing electrons through a semiconductor material, are often coupled with phosphors that glow when excited by radiation from the LED.


“But it’s hard to get one phosphor that makes the broad range of colours needed to replicate the sun,” notes John Budai, a scientist in Oak Ridge National Laboratory’s (ORNL’s) Materials Science and Technology division. “One approach to generating warm-white light is to hit a mixture of phosphors with ultraviolet radiation from an LED to stimulate many colours needed for white light.”


Budai is working with a team of scientists from University of Georgia and Oak Ridge and Argonne national laboratories to understand a new group of crystals that might yield the right blend of colours for white LEDs as well as other uses.


Zhengwei Pan’s group at UGA grew the nanocrystals using europium oxide and aluminium oxide powders as the source materials because the rare-earth element europium is known to be a dopant, or additive, with good phosphorescent properties.


“What’s amazing about these compounds is that they glow in lots of different colours - some are orange, purple, green or yellow,” Budai explains. “The next question became: why are they different colours? It turns out that the atomic structures are very different.”


Budai has been studying the atomic structure of the materials using x-rays from Argonne’s Advanced Photon Source. Two of the three types of crystal structures in the group of phosphors had never been seen before, which can probably be attributed to the crystals’ small size, Budai claims.


“Only the green ones were a known crystal structure,” Budai says. “The other two, the yellow and blue, don’t grow in big crystals; they only grow with these atomic arrangements in these tiny nanocrystals. That’s why they have different photoluminescent properties.”


X-ray diffraction analysis is helping Budai and his collaborators work out how the atoms are arranged in each of the different crystal types. The different-coloured


June 2013 ww.compoundsemiconductor.net 71


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191