news digest ♦ Power Electronics
LAST POWER to boost SiC & GaN power microelectronics
A new European project based on silicon carbide and gallium nitride research should enhance power devices for a variety of applications
LAST POWER 1 is commencing a three-year program.
The redesign provides search and access to a trove of GaN transistor technology educational materials and product information.
From the home page, power design engineers have immediate access to a wealth of articles, videos and textbooks.
These materials will accelerate understanding and use of this new, rapidly emerging technology.
According to Alex Lidow, co-founder and CEO, “All new technologies have a learning curve that engineers must climb prior to implementing a new technology effectively and efficiently. At EPC we recognise our responsibility to the design community to make certain that engineers know the benefits and understand the intricacies of working with gallium nitride technology.”
Lidow continues, “ We have taken this education responsibility seriously and have generated and collected a vast amount of materials on GaN transistor technology and applications. Now these materials are concentrated in a single location. Engineers wanting to learn about GaN transistors simply can go to
epc-co.com.”
EPC’s design and applications team are experts in the field of GaN transistor technology and their applications.
Since the founding of EPC in 2007, this team has published over 50 articles in professional journals and delivered more than 30 presentations at industry and academic conferences.
The firm says it has published the only textbook available on the subject, “GaN Transistors for Efficient Power Conversion.”
LAST POWER 1 is a European Union-sponsored program aimed at developing a cost-effective and reliable technology for power electronics.
The project is aimed at commercialising energy-efficient devices for industrial and automotive applications, consumer electronics, renewable-energy conversion systems, and telecommunications.
Launched in April 2010 by the European Nanoelectronics Initiative Advisory Council (ENIAC) Joint Undertaking (JU), a public-private partnership in nanoelectronics, LAST POWER links private companies, universities and public research centres.
They work in the field of wide bandgap semiconductors which are based on SiC and GaN technologies.
The consortium members are STMicroelectronics (Italy), project coordinator, LPE/ETC (Italy), Institute for Microelectronics and Microsystems of the National Research Council - IMM-CNR (Italy), Foundation for Research & Technology-Hellas - FORTH (Greece), NOVASiC (France), Consorzio Catania Ricerche -CCR (Italy), Institute of High Pressure Physics - Unipress (Poland), Università della Calabria (Italy), SiCrystal (Germany), SEPS Technologies (Sweden), SenSiC (Sweden), Acreo (Sweden), Aristotle University of Thessaloniki - AUTH (Greece).
The main achievements in SiC-related efforts were based on the demonstration by SiCrystal of large-area 4H-SiC substrates, 150mm in diameter, with a cut-off angle of 2°off axis.
The material quality, both in crystal structure and surface roughness, is comparable with the standard 100mm 4°off material available at the beginning of the project.
At LPE/ETC, these substrates have been used for epitaxial growth of moderately doped epi-layers suitable for the fabrication of 600-1200V JBS (Junction
162
www.compoundsemiconductor.net June2013
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191