This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest


Further details of this work have been published in the paper, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” by Benjamin S. Mashfordet al in Nature Photonics (2013), 407-412. DOI:10.1038/nphoton.2013.70


GaAs nanowires harvest solar power


A novel 3 dimensional geometry based on gallium arsenide enables trapping more light than planar structures, such as silicon solar devices, and with less material


How can we harvest the energy of the sun at a better quality and at a cheaper cost?


To find out, Anna Fontcuberta and her team in the STI Laboratory of Semiconductor Materials (LMSC) at EPFL are working on novel solutions to produce the solar cells of tomorrow.


The research of Fontcuberta, a professor in the STI LSMCL, focuses on new ways to engineer semiconducting structures, mainly with the use of nanotechnologies.


Semiconductors, thanks to their physical properties, have increased the functionality of many objects in our daily lives (microwave ovens, cars, DVD player or computers e.g.) and at the same time our quality of life.


The LSMC works on new geometries using nanowires. These are needle-like crystals of a diameter between 20 and 100 nm and several microns long.


The objective is to increase their functionality by understanding their properties and finding new ways to fabricate them. Among the many applications using nanowires is one of a higher interest to Fontcuberta and her team: solar cells.


Because of the world’s urgent need to harvest greener energies, nanowire solar cells have a huge societal and industrial potential for the future.


“We are working on nanowire solar cells using GaAs in their core, a high conducting material which absorbs light at the ideal range with respect to the solar spectrum”, explains Fontcuberta.


For example, in the 1990’s, GaAs solar cells took over from silicon devices in photovoltaic arrays for satellite applications, or power the robots that are exploring the surface of Mars.


Nanowire solar cells represent the 3rd generation of solar cells because they are made on a very small scale and can be combined in many different ways, enabling the extraction of more energy at a lower cost.


Despite encouraging applications, “It might take ten more years before nanowires can be found on the market”, explains Fontcuberta.


This is an objective, which the LMSC will pursue at EPFL.


In the LMSC, gallium and arsenide atoms are engineered (or “tricked”) in a way that they organise themselves to form wires rather than horizontal layer on layer structures (which they tend to do naturally).


This 3 dimensional geometry is a novelty as it enables the trapping of more light than planar structures, such as silicon solar devices, and with less material.


Each vertical nanowire becomes a device that produces current. The combination of the nanowires’ small scale (one micron) and revolutionary 3D geometry (a little bit like hair standing up), enables a significant decrease of the solar cell’s cost per watt - compared to commonly used solar cells.


Apart from enhancing the light absorbtion, Fontcuberta and her team are working on ways to optimise it. For example, they combine the nanowire’s GaAs core with other nanoscale materials in both axial and radial directions. As an example, InAs quantum dots (or “islands”) on the nanowire play the role of stimulants for a better absorbtion of the light.


An illustration of an example structure is shown below.


June 2013 www.compoundsemiconductor.net 187


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191