This page contains a Flash digital edition of a book.
NEWS REVIEW


TriQuint’s GaN-on-diamond technology is cutting edge


TRIQUINT SEMICONDUCTOR has produced, what it claims, is the industry’s first GaN transistors using GaN-on- diamond wafers that substantially reduce semiconductor temperatures while maintaining high RF performance.


The firm’s latest technology enables new generations of RF amplifiers up to three times smaller or up to three times the power of today’s GaN solutions.


TriQuint received a Compound Semiconductor Industry Award in March commending its new GaN-on-diamond achievements. TriQuint’s James L. Klein, Vice President and General Manager for Infrastructure and Defence Products, remarked that unlocking the true potential of high-efficiency GaN circuits will depend on achievements like those of TriQuint’s advanced research and development program.


Operating temperature largely determines high performance semiconductor reliability. It’s especially critical for GaN devices that are capable of very high power densities.


“By increasing the thermal conductivity and reducing device temperature, we are enabling new generations of GaN devices that may be much smaller than


today’s products. This gives significant RF design and operational benefits for our commercial and defence customers,” he said.


TriQuint demonstrated its new GaN- on-diamond, high electron mobility transistors (HEMT) in conjunction with partners at the University of Bristol, Group4 Labs and Lockheed Martin under the Defence Advanced Research Projects Agency’s (DARPA) Near Junction Thermal Transport (NJTT) program.


NJTT is the first initiative in DARPA’s new ‘Embedded Cooling’ program that includes the ICECool Fundamentals and ICECool Applications research and development engagements. NJTT focuses on device thermal resistance


‘near the junction’ of the transistor. Thermal resistance inside device structures can be responsible for more than 50% of normal operational temperature increases. TriQuint research has shown that GaN RF devices can operate at a much higher power density and in smaller sizes, through its highly effective thermal management techniques. TriQuint’s breakthrough involves the successful transfer of a semiconductor epitaxial overlay onto a synthetic diamond substrate, providing a high thermal conductivity and low thermal boundary resistance, while preserving critical GaN crystalline layers.


This achievement is the first to demonstrate the feasibility of GaN-on- diamond HEMT devices. Results to date indicate TriQuint achieved the primary NJTT goal of a three-fold improvement in heat dissipation while preserving RF functionality; this achievement supports reducing power amplifier size or increasing output power by a factor of three.


Additional fabrication improvements and extensive device testing are underway to optimise the epitaxial layer transfer process and fully characterize enhancements that can be achieved in these new HEMT devices.


M/A COM develop solderable flip-chip gaas schottky diodes


M/A-COM Technology has announced a new broadband Flip Chip Schottky Diode for multi-market applications. The MADS- 001317-1500 is designed for customers who need a versatile, low cost, ultra- small Schottky solution for Police Radar, Point to Point, Electronic Warfare and Aerospace and Defence applications.


The MADS-001317-1500 is a package- less Schottky device with contacts that allow for standard solder reflow manufacturing processes. The high cut off frequency of this diode allows customers to use the device through millimetre wave frequencies.


The MADS-001317-1500 boasts excellent performance making it an ideal solution for single and double balanced mixers


14 www.compoundsemiconductor.net June 2013


in PCN transceivers and radios, police radar detectors, and automotive radar detectors.


The table below outlines typical performance of the GaAs based device. The MADS-001317-1500 is fabricated using a GaAs process which features full passivation for increased performance and reliability.


The low parasitic capacitance and inductance allow for operation up to 80 GHz,” says Paul Wade, Product Manager.


“Due to wafer scale reduction, the device minimises unwanted parasitic and allows for exceptional performance beyond 80 GHz. Production quantities and samples of MADS-001317-1500 are available from stock.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191