This page contains a Flash digital edition of a book.
TECHNOLOGY VCSELs “


Results show that our wafer-fused VCSELs are ready for entering the


rapidly growing market of 40GBASE-LR4 transceivers for data centres and telecom local area networks. It is clear to us that the telecom industry is set to benefit from the unique opportunity offered by this new generation of un-cooled 10 Gbit/s 1310 nm communication lasers


Results on more recent devices are even more promising. For VCSELs operating at 10 Gbit/s at a bias current of 7 mA, the predicted time to 1 percent failure at 70°C is now 50 years. Thanks to this progress, our wafer-fused VCSELs largely meet the telecom industry requirements for the time to 1 percent failure, which is more than 10 years at 70°C (see Figure 7).


These results show that our wafer-fused VCSELs are ready for entering the rapidly growing market





Figure 7. On recent devices that operate at 10 Gbit/s at a bias currents of 7 mA, the predicted time to 1 percent failure at 70°C increases to 50 years


Figure 5. While with currently developed VCSELs, 10 Gbit/s operation can be achieved at a constant bias current of typically 7 mA in the full temperature range from 0°C to 85 °C, with standard DFBs the bias current needs to be constantly adjusted depending on the ambient temperature (eye diagrams above for 20°C). 10 Gbit/s operation at a bias current at or below 7 mA allows the application of very low power consumption VCSEL driver arrays that were developed for short wavelength (<1µm) datacom VCSELs


of 40GBASE-LR4 transceivers for data centres and telecom local area networks. It is clear to us that the telecom industry is set to benefit from the unique opportunity offered by this new generation of un-cooled 10 Gbit/s 1310 nm communication lasers, which can reduce the cost and the power consumption of 40 Gbit/s modules to the level of 10 Gbit/s modules existing today.


One of the most promising opportunities for these 40GBASE-LR4 1W transceivers is as replacements for the 1 W QSFP packages, which are standard modules normally employed in the switching racks of data centres. If this upgrade is made, it is a very efficient way to considerably increase the throughput of existing data centres.


Although, like with any new technology, there are always concerns associated with the adoption of any new class of device, those that make the leap promise to slash the power consumption of their transceivers, and help to reduce the escalating energy costs associated with internet traffic.


Figure 6. Using the aging parameters of the first generation devices that can be modulated at 10 Gbit/s at 9 mA bias current, one can predict time to 1 percent failure of 291 years and 19 years at 25°C and 70°C ambient temperatures, respectively


44 www.compoundsemiconductor.net June 2013


© 2013 Angel Business Communications. Permission required.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191