This page contains a Flash digital edition of a book.
Solar ♦ news digest


Quantum physics could boost III-V solar cell efficiency


InAs (indium arsenide), GaAs (gallium arsenide) and CdSe (cadmium selenide) will be some of the materials used to produce quantum dots in proposed solar cell research


The University of Salford is to conduct theoretical work on third generation solar cells.


Researchers aim to use semiconductor nanostructures in order to significantly increase the electricity produced by sunlight – from around 10 percent efficiency to 31 percent or more.


at the University of Manchester and the University of Tokyo, using, amongst other materials, CdSe, InAs and GaAs.


The impact of this research, which is funded, among others, by the Engineering and Physical Sciences Research Council, UK, and the Royal Society, London, is a significant development in the de-carbonising of energy supplies.


Currently, though prices are falling. Solar generation is more expensive than traditional fossil fuel generation.


Once this technology reaches efficiencies that can be mass-produced, the gap will diminish and possibly disappear, and more energy will be generated from fewer cells covering less space.


This, the researchers believe, makes them ideal for densely populated urban areas, which currently receive electricity through inefficient long distances power grids.


Tomic says, “Governments around the world are keen to pursue this technology, but in the UK we have one of the few teams able to create working cells. While the high efficiency solar cells possibly represent the energy source of the second half of the century, the work we’re doing now is of utmost importance as we seek to limit carbon emissions.”


Solar Panels


Stanko Tomic, a professor from the University of Salford’s School of Computing, Science & Engineering and his team will be designing the semiconductor quantum dots. They aim to substantially reduce the energy losses present in conventional silicon solar cells.


The conversion of extra energy, which would otherwise be lost in the form of panel heat, into electricity is a major key in increasing solar cell efficiency and reducing cost.


Conventional silicon solar cells turn between 10 and 20 percent of light into electricity – the new cells will increase this to up to 31 percent or even higher.


Tomic and his team will use methods of computational physics, which combine the laws of quantum mechanics and advanced numerical algorithms, together with supercomputer power, to describe the structure of the materials, in order to design new solar cell devices.


Tomic will design the quantum dots that will be fabricated


Amonix III-V cell achieves record PV module efficiency at 36 percent


The firm’s multi-junction solar cell’s result was verified by NREL and beats the firm’s previous record of 34.2 percent


Amonix, a designer and manufacturer of concentrator photovoltaic (CPV) solar power systems, has successfully converted more than 36 percent of direct sunlight into electricity.


A module showcasing Amonix’s latest-generation CPV technology has been in outdoor testing from late February to April of this year.


During this period, the Amonix module demonstrated a peak operating efficiency of 36.2 percent measured on March 14th, 2013 with a DNI of 876 W/m2, an ambient temperature of 16°C and instantaneous wind speed of 1 m/s. This breaks the previous 34.2 percent peak efficiency set by Amonix in May 2012.


Over the entire testing period, the Amonix module earned June 2013 www.compoundsemiconductor.net 149


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191