This page contains a Flash digital edition of a book.
RF Electronics ♦ news digest possible.”


The researchers worked with molybdenum sulphide (MoS2), an inexpensive semiconductor material with electronic and optical properties similar to materials already used in the semiconductor industry.


However, MoS2 is different from other semiconductor materials because it can be grown in layers only one atom thick without compromising its properties.


In the new technique, researchers place sulphur and molybdenum chloride powders in a furnace and gradually raise the temperature to 8500C, which vaporises the powder. The two substances react at high temperatures to form MoS2. While still under high temperatures, the vapour is then deposited in a thin layer onto the substrate.


“The key to our success is the development of a new growth mechanism, a self-limiting growth,” Cao says.


“Using this technique, we can create wafer-scale MoS2 monolayer thin films, one atom thick, every time,” Cao explains. “We can also produce layers that are two, three or four atoms thick.”


Cao’s team is now trying to find ways to create similar thin films in which each atomic layer is made of a different material. Cao is also working to create field- effect transistors and LEDs using the technique. Cao has filed a patent on the new technique.


Oclaro to showcase expanded laser diode portfolio


The lineup includes an 80 W fibre laser pump, an 150ps DFB seed laser, high performance diode bars at 10xx and 14xx nm and higher power 63x red diode lasers in a smaller package


Oclaro showcased several new, innovative laser diode products for fibre laser, direct diode, medical and consumer applications at the LASER World of PHOTONICS conference in Munich.


MoS2 structure


The researchers can precisely control the thickness of the MoS2 layer by controlling the partial pressure and vapour pressure in the furnace. Partial pressure is the tendency of atoms or molecules suspended in the air to condense into a solid and settle onto the substrate. Vapour pressure is the tendency of solid atoms or molecules on the substrate to vaporise and rise into the air.


To create a single layer of MoS2 on the substrate, the partial pressure must be higher than the vapour pressure. The higher the partial pressure, the more layers of MoS2 will settle to the bottom.


If the partial pressure is higher than the vapour pressure of a single layer of atoms on the substrate, but not higher than the vapour pressure of two layers, the balance between the partial pressure and the vapour pressure can ensure that thin-film growth automatically stops once the monolayer is formed. Cao calls this “self-limiting” growth.


Partial pressure is controlled by adjusting the amount of molybdenum chloride in the furnace - the more molybdenum is in the furnace, the higher the partial pressure.


Leveraging the newest generation 9xx chip design, the BMU80 fibre-coupled, single-emitter module delivers 80 W power in a 105 µm fibre, enabling fibre laser manufacturers to reduce system complexity and achieve higher power with fewer modules.


The 1060 nm DFB seed laser, capable of 800mW peak power at 150 ps pulses and 150 kHz line-width in CW mode, enables short pulse lasers for materials processing applications with improved precision and reduced thermal effects.


Oclaro is also expanding their high power laser diode portfolio to include 10xx and 14xx nm wavelengths. Highly reliable 10xx bars enable multi-Kw direct diode systems through wavelength multiplexing with the 9xx wavelengths. The new family of 14xx nm bar and single emitter products can be used for medical, cosmetics and industrial applications.


The new additions to the visible laser diode family are 100 mW, 633 nm and 150 mW, 638 nm laser diodes.


The 633 nm laser diode offers a compact, high efficiency alternative to the existing bulky He-Ne gas lasers and enables system designers to achieve measurement accuracy, stability and speed which are essential for biomedical and inspection applications.


The 638 nm laser diode delivers 25 percent more output June 2013 www.compoundsemiconductor.net 129


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191