This page contains a Flash digital edition of a book.
Equipment and Materials ♦ news digest


The SIMS Workstation Plus has the most comprehensive specification with the addition of the IG5C Caesium ion gun for electronegative species, having a spot size of just 20 µm.


for radial analysis of growth conditions. It provides wafer bow and temperature measurements, as well as simultaneous detection of growth rate and surface morphology.


The MASsoft Professional SIMS PC data system provides automated measurement of positive and negative ions and of neutral species. It enables full control of the mass spectrometer and ion gun operating parameters and ion beam raster, with acquired data presented in real time.


The ESM LabVIEW SIMS Imaging program acquires, stores and displays the data for presentation in the form of elemental surface maps with both 2D and 3D view capabilities.


Times for analysis are down to just 150 milliseconds.


IMRE uses LayTec tool for 200mm GaN-on-silicon


The EpiCurve Triple TT in-situ monitoring system is being used to develop epiwafers for InGaN/GaN LEDs and GaN power electronic devices


In his invited talk at the LED Technology Forum in Singapore Sudhiranjan Tripathy of IMRE (Institute of Materials and Research Engineering, A*STAR revealed the latest results of GaN growth on 200 mm diameter silicon.


The conference took place between 7th and 10th May.


Tripathy’s team uses LayTec‘s in-situ monitoring system EpiCurveTriple TT to develop epiwafers for InGaN/GaN LEDs and GaN power electronic devices.


EpiCurve Triple TT is ideally suited for 200 mm real time wafer characterisation because of its 3 sensor heads


Fig. 2: 405 nm reflectance (left) of InGaN/GaN MQW stacks and the corresponding STEM image of the MQWs (right).


According to Tripathy‘s team, LayTec in-situ metrology is a key element for identifying the epitaxial process spotentials. In comparison to the time consuming, destructive ex-situ cross section transmission electron microscopy analysis, the in-situ tool provides real time information on growth thickness and homogeneity already during growth.


LayTec says its system has reduced significantly IMRE‘s R & D cycles for epitaxial growth optimisation and enables faster industrialisation of the GaN-on-Silicon technology.


June 2013 www.compoundsemiconductor.net 171


Fig. 1: Reflectance monitoring of AlGaN/GaN HEMT structure grown on 1.0 mm thick 200 mm diameter Si (111) at IMRE: blue - 405 nm, green - 633 nm, red - 950 nm


Fig. 1 shows reflectance profiles at 3 wavelengths: 950 nm for emissivity correction of pyrometry, 633 nm for analysis of thick layers e.g. GaN buffer, and 405 nm for thin layers. Fig. 2 demonstrates how the 405 nm reflectance is used for individual in-situ tuning of each well and barrier within the multiquantum wells stack.


The in-situ signal (Fig. 2 - left) perfectly corresponds with the multi-quantum wells (MQWs), which can be seen in the scanning transmission electron microscopy (sTEM, Fig. 2 - right).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191