search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
796 R. Freire Filho and J. M. Palmeirim


TABLE 1 Predictive variables used in our analysis of the potential distribution of and priority conservation areas for the Caatinga howler monkey Alouatta ululata.


Variable


Maxent variables % tree cover


Aridity index Bio17


Bio15


Forest canopy height Ruggedness index


Constraint layers Anthropogenic areas


Influence of roads Population density Description Canopy closure for all vegetation .5 m height


Rainfall deficit for potential vegetative growth (higher values represent greater aridity) Precipitation of driest quarter


Precipitation seasonality (SD of monthly precipitation expressed as %) Global 1 km forest canopy height


Measurement of terrain heterogeneity generated in QGIS using SRTM3 data


Land cover map from GlobCover project; all categories (croplands & urban areas) were joined in a single class


Buffer of road influence 18 km either side; this distance was selected subjectively by visually analysing land cover along roads in the study area


GlobalRural–UrbanMapping Project,Version1 (GRUMPv1): Population Density Grid


Source


Global forest change 2000–2014; Hansen et al. (2013)


CGIAR Consortium for Spatial Information; Zomer et al. (2008) WorldClim 1.4; Hijmans et al. (2005) WorldClim 1.4; Hijmans et al. (2005)


SDAT (2011), Simard et al. (2011) USGS (2000), Riley et al. (1999)


ESA (2009) IBGE (2015) SEDAC (2011), Balk et al. (2006)


when the occurrence data include a moderate level of loca- tional error (Graham et al., 2008). Our initial database in- cluded 184 occurrences, 52 from our surveys and 132 from CPB/ICMBio. However, to minimize problems associated with spatial biases in sampling we used spatial filtering (Kramer-Schadt et al., 2013), reducing the number of occur- rences in oversampled areas by using only one within a ra- dius of 5 km. This filtering procedure reduced the number of occurrences used in the modelling to 117 (20 direct observa- tions and 70 reports from CPB/ICMBio, and one observa- tion and 26 reports from our surveys).


Modelling of potential distribution


We used Maxent to identify variables influencing the dis- tribution of A. ululata and generate a distribution map (Phillips et al., 2006). The choice of environmental variables was guided by the species’ biology; A. ululata is arboreal, feeds on leaves, fruits and other plant parts, and lives in a semi-arid region influenced by seasonal rainfall and high temperatures. We expected areas with higher precipitation to be more suitable during the most critical period of the year, the dry season. Furthermore, we hypothesized that tree cover and tree height would influence suitability, and that areas with rugged terrain would be more suitable be- cause terrain ruggedness tends to be an obstacle to habitat destruction and to provide some protection from hunting. With the help of a matrix of correlations between all candi- date variables, we selected a set of six predictors (Table 1)


that were not highly correlated (|r|,0.70; Rainho & Palmeirim, 2013) and that were biologically meaningful. Prior to running Maxent all layers were converted to the


WGS 1984 geographical coordinate system and to a cell size of 30 arc seconds (c. 1 km2), using IDRISI Selva (Eastman, 2012) and QGIS 2.8 (QGIS Development Team, 2016). In Maxent we used the following settings: convergence thresh- old (10–5), maximum iterations (500), regularization multi- plier (1), maximum number of background points (104), linear, quadratic, product and hinge features, random seed generation and 50 replicates. The resulting map is in logistic format, with the probability of presence for each cell being in the range 0–100% (Phillips, 2008). To select a suitability threshold for the potential distribution map we used the methodology described in Rainho & Palmeirim (2013), which facilitates the selection of the smallest area including most occurrences. The area selected was that corresponding to the Maxent suitability threshold 70%, which encom- passed 83% of the occurrences (Fig. 2); above this threshold the inclusion of more occurrences would force the addition of a disproportionally large area.


Prioritizing areas for conservation


We used Zonation (Moilanen et al., 2005) to prioritize areas for the conservation of A. ululata. Zonation generates a pri- ority map that can be used to inform decision-making. Cost efficiency can be considered in this prioritization through the inclusion of a cost layer. We assume that conservation


Oryx, 2020, 54(6), 794–802 © 2019 Fauna & Flora International doi:10.1017/S0030605318001084


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164