Macaca nigra
789
FIG. 2 The functional relationships of predicted occupancy, with standard error, of M. nigra, with covariates included, in the best-fit models (Table 3): (a) protective area status, (b) forest cover (bush/scrub or closed canopy forest), (c) Euclidean distance from forest edge (negative values for cameras in non-forested habitat), and (d) Normalized Difference Vegetation Index (NDVI).
p = 0.66 and ψ = 0.28 (Table 2). By taking this estimate for occupancy and extrapolating it to all sites across the landscape (n = 796 or 3148 km2), we estimated the area of occupancy of M. nigra to be 2,101 km2. Finally, our goodness-of-fit test (χ2 = 1869,P= 0.65) indicated no evidence for a lack of fit for the most saturated model, suggesting that the more parsimonious models provide an adequate description of the data. According to our criteria of predicted occupancy .0.7 and continuous forest cover .50 km2, we identified eight distinct regions that probably contain important subpopulations (Fig. 3, Supplementary Table 3, Supplementary Fig. 2).
Optimal study design and power analysis
Considering the estimates from our averaged model and assuming constant probabilities, an optimal survey design would have 123 camera-trap sites, each with 8 repeats (1.5 months when each repeat constitutes a duration of 5 days) to achieve a target standard error of 0.05 (Fig. 4a).However, for camera traps further repeats are easily gained, without incurring further cost, by simply delaying the retrieval of the cameras. Therefore, it is possible to reduce the number of sites
needed by increasing the number of repeats,without addition- al cost, and thereby reducing overall survey costs. Under this option, if the number of repeats is increased to 18 (90 days, or c. 3 months), the number of camera-trap sites could be reduced to 90 (Fig. 4b). As the cheapest means of surveying M. nigra with suitable precision, this is the protocol that we advocate. Simulating the power provided by this protocol, if applied across multiple seasons, 3 years would be sufficient to detect a 10% decline in occupancy with 80% certainty.
Discussion
Our study demonstrates an extension in the known range of M. nigra compared to previous data. We show that camera-trap data coupled with occupancy analysis can provide a robust baseline assessment of a predominantly ground-dwelling forest primate of conservation concern. We estimated an occupancy of 0.66 (2,101 km2) for M. nigra, which represents the first baseline for future re- gional monitoring of the species. Estimated occupancy was only slightly higher than the naïve occupancy (0.64), which is probably an artefact of a long survey duration, which resulted in a high cumulative detection probability,
Oryx, 2020, 54(6), 784–793 © The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319000851
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164