search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Potential distribution of and priority conservation areas for the Endangered Caatinga howler monkey Alouatta ululata in north-eastern Brazil ROB ÉRIO F REIRE F ILHO and J ORGE M. P AL MEI R IM


Abstract The Caatinga of north-eastern Brazil is the largest and most diverse seasonally dry tropical forest in the Americas and is home to numerous endemic species. However, only 1.2% of the area is under full protection, and given the ongoing decline of this biome there is an urgent need to expand the protected area network. The Endangered Caatinga howler monkey Alouatta ululata is almost endemic to the Caatinga, and is a potential umbrella species for the protection of its biodiversity. Using all avail- able distribution data and our own surveys we applied Maxent and Zonation spatial modelling to identify the range of A. ululata, and priority conservation areas for the species, maximizing habitat quality and connectivity, and minimizing conservation constraints. The top 10% priority areas cover 34,400 km2 and mostly coincide with good rem- nants of Caatinga. Only priority areas in the northern part of the species’ range are protected, so it is essential to create new protected areas in the centre and south of the range. Maxent modelling indicates that the species depends on good tree cover, but even inside protected areas we observed recent deforestation, illustrating the urgency to improve management. Maxent also indicated that aridity limits the species’ range, and therefore the ongoing aridification of the Caatinga is a threat to its future. The protection of A. ululata requires establishing new protected areas in priority locations and improving management of existing protected areas. Preservation of priority areas for the Caatinga howler monkey also represents an opportunity for the conservation of other important biodiversity in the region.


Keywords Alouatta ululata, Brazil, Caatinga, Caatinga howler monkey, Maxent, primate, species distribution modelling, Zonation


Supplementary material for this article is available at https://doi.org/10.1017/S0030605318001084


Introduction


nificant wilderness area (Aguiar et al., 2002). It is the largest and most diverse seasonally dry tropical forest in the Americas and harbours large numbers of endemic species (DRYFLOR et al., 2016). However, its natural vegetation has been declining at an alarming rate (Beuchle et al., 2015) as a result of land-use intensification (Aguiar et al., 2002; Leal et al., 2005). There is an urgent need for conser- vation measures to protect the Caatinga, with only 1.2%of the area currently under full protection (DRYFLOR et al., 2016). Protected areas need to be expanded, and charismatic species, such as large primates, can facilitate this process (Ducarme et al., 2013) as they function as umbrella species for the conservation of valuable but more discreet biodiver- sity within their range. One of the species with the greatest potential for this role is the Caatinga howler monkey Alouatta ululata, which requires vast areas of suitable habitat to maintain viable populations. TheCaatingahowlermonkeyiscategorizedasEndangered


T


on the IUCN Red List because of its small and declining population, a consequence of tree cover loss, habitat fragmen- tation and hunting (Oliveira & Kierulff, 2008). Most of the species’ range is within the Caatinga, although it extends into the Cerrado (Oliveira & Kierulff, 2008), but its limits are poorly known, which is a major constraint for the plan- ning of conservation measures (Oliveira & Kierulff, 2008). Species distribution modelling is a tool for mapping geographical distributions and studying how they are influenced by environmental variables (Miller, 2010). It is widely applied in conservation science and its models may support the selection of areas for conservation (Araújo et al., 2002). The most common approach in species distribution modelling is maximum-entropy modelling, often applied using Maxent software (Phillips et al., 2006). The identification of priority areas for conservation of


ROBÉRIO FREIRE FILHO (Corresponding author) Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Zoologia, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Cep. 50670-420, Recife-Pernambuco, Brazil. E-mail freirefilho@outlook.com


JORGE M. PALMEIRIM Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal


Received 15 February 2018. Revision requested 17 April 2018. Accepted 7 August 2018. First published online 15 May 2019.


species is a fundamental step in developing conservation plans (Pressey et al., 2007), and computational tools have been developed to carry out this process of prioritization, taking into consideration factors such as habitat quality, connectivity and conservation cost (Kukkala & Moilanen, 2013). C-Plan (Pressey et al., 2009), Marxan (Watts et al., 2009) and Zonation (Moilanen et al., 2005) are examples of approaches and packages developed for conservation pri- oritization. The general objective of all these packages is


Oryx, 2020, 54(6), 794–802 © 2019 Fauna & Flora International doi:10.1017/S0030605318001084


he Caatinga covers c. 735,000 km2 of north-eastern Brazil (Leal et al., 2005) and is considered to be a sig-


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164