search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
874 P. Singh et al.


FIG. 1 North-east India, with Dampa Tiger Reserve in Mizoram and locations where the dhole Cuon alpinus has been recorded, with corresponding reliability scores (see text for details).


in newspaper reports, scientific articles, grey literature (in- cluding species checklists), and reports by forest department personnel, local informants and naturalists working in the region. For each record we noted the type of evidence (direct/indirect), date of sighting, administrative status of location (protected/non-protected), and source person or reference. We assigned reliability scores for each record (1–5; with 1 being most reliable, and 5 least reliable; Supplementary Table 1). From December 2014 to March 2015, we deployed 79


pairs of Cuddeback Ambush IR camera traps (Model 1187; Cuddeback, De Pere, USA) across 80 km2 in the north-east of Dampa Tiger Reserve’s core area. At each station we placed two cameras facing each other, c. 30 cm above the ground, on either side of forest trails or on riverbeds (Singh & Macdonald, 2017). Mean inter-trap distance was 1.02 ± SD 0.33 km, with traps remaining active for an average of 64 days (range 3–91; Singh&Macdonald, 2017). Although the stations were intended to photograph wild felids, they also photographed other carnivores. Dholes generally use forest trails and riverbeds for movement, marking territories and hunting, and our sampling design therefore incorpo- rated areas used by the species. Weexamined site-use patterns through an occupancy ap-


proach that accounted for imperfect detection (MacKenzie et al., 2002). We treated each station as a site, and each trap-day as an independent temporal replicate. During exploratory analyses we calculated Moran’s I to check for spatial dependence of detections. Spatial dependence dropped beyond 2.3 km, with,10%of distance-pairs falling within the first distance class (Supplementary Fig. 1). We considered this to be negligible with respect to the total number of trap stations and detections, and therefore treated each station as an independent site. The detection


matrix therefore contained non-detections and detections (coded as 0 and 1, respectively) for 74 sites (data from five sites could not be retrieved), with a varying number of temporal replicates (3–91 days). We used photo-capture frequencies of key prey species


(sambar n = 236, muntjac n = 145, wild pig n = 92; predicted positive influence), distance to reserve boundary (predicted positive influence), photo-capture frequencies of forest department personnel (predicted positive influence) and photo-capture frequencies of other humans (predicted negative influence) as factors likely to influence site-use by dholes. We used trap effort (number of days a trap station was active) at each site as a covariate for detection probabil- ity, predicting that higher effort would translate to higher detectability. We tested singular and additive effects of the covariates, in which each represented an ecologically plausible hypothesis. Covariates were checked for cross- correlations and z-transformed prior to analyses. Models were ranked using Akaike information criterion corrected for small sample sizes (AICc; Burnham & Anderson, 2002). Parameter estimation and model comparisons were calcu- lated with PRESENCE 11.9 (Hines, 2006). We obtained presence records from 80 locations for


1990–2018, of which we considered 41 records from 2010– 2018 with reliability scores of 1–3 (Supplementary Table 2). In the case of multiple records for the same site, we consid- ered the most recent record with the highest reliability score. Most records were from Arunachal Pradesh (n = 14) and Assam (n = 8), with five records from Mizoram and Nagaland, four from West Bengal, three from Meghalaya and two from Sikkim. There were no recent records of dholes from Manipur and Tripura. A total of 5,033 camera trap-days in Dampa Tiger Reserve generated 500 photo- encounters of dholes, comprising 92 detections (one per


Oryx, 2020, 54(6), 873–877 © 2019 Fauna & Flora International doi:10.1017/S0030605319000255


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164