786 C. L. Johnson et al.
FIG. 1 Camera-trap placements across North Sulawesi province in relation to protected and unprotected areas and the main habitat types. The line represents the boundary between Macaca nigra and Macaca nigrescens (Johnson et al., 2019).
spatial dataset of covariates that could potentially explain any heterogeneity in M. nigra occupancy. These were pres- ence of forest cover (Yes/No), elevation, slope, normalized difference vegetation index (NDVI), distance to roads and settlements, protected area (Yes/No), level of anthropogenic disturbance in the landscape (measured by the Human Footprint Index; Venter et al., 2016), and distance from the edge of continuous forest (Table 1). All covariates were extracted for the exact camera location, except for NDVI, slope and elevation. As a measure of landscape rough- ness, and therefore accessibility, we calculated the mean of slope and elevation across each site. We calculated NDVI using red and near infrared spectral bands in Landsat 8 imagery (Hansen et al., 2013), averaged across each site. All spatial datasets for covariates were calculated and de- rived in ArcGIS 10.2 (Esri, Redlands, USA).
Data analyses: occupancy modelling
We discretized our sampling data, following Rovero & Spitale (2016), into 24 consecutive 5-day sampling occasions (of 1, 5 and 10 days, a 5-day duration best facilitated model convergence). For each site and each occasion, a 1 indicated detection (a photograph) and 0 indicated non-detection (no photograph) of M. nigra. To assess the influence of ecological and anthropogenic
factors on occupancy, we fitted single-season occupancy models to the data using the package unmarked (Fiske &
Chandler, 2011)in R 3.5.1 (R Development Core Team, 2010). Single-season occupancy models estimate both the probability that a site is occupied (ψ) and the probability that the species is detected if it is present (p) using a max- imum likelihood approach (Mackenzie et al., 2002). All nu- merical covariates were first standardized into z-scores and assessed for collinearity using Pearson’s rank correlation. As no covariates were found to exhibit collinearity .0.6, no covariates were excluded in any of the candidate models (Supplementary Table 1). We next examined the effect of covariates (Table 1)on
our parameter of interest, ψ. However, we expected that a number of covariates that influence occupancy of M. nigra may also affect the abundance of M. nigra and therefore detectability (Royle & Nichols, 2003). Additionally, there are other factors that could also influence the detectabil- ity. We therefore began our model selection process by ex- plicitly accounting for p. Following recommendations of MacKenzie et al. (2006), we identified a suitable covariate structure for p whilst holding the covariate structure for ψ constant. Covariate structure for p was assessed using the Akaike information criterion corrected for small sample sizes (AICc).Wethen fixed the covariate structure for p with the covariate structure that had the lowest AICc (Burnham & Anderson, 2002) and proceeded to assess the role of our covariates on ψ, ranking the competing models according to their AICc values. If multiple models were within 2 ΔAICc points, they were considered equally supported (Burnham & Anderson, 2002) and estimates were instead derived by
Oryx, 2020, 54(6), 784–793 © The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319000851
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164