search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
788 C. L. Johnson et al.


TABLE 2 Model selection results for covariate effects in determining occupancy probability of M. nigra across its native range in North Sulawesi. The top ranked models are shown as those with ΔAIC c,3 followed by the null and average model. All models depicted (ΔAICc ,2) were included in the averaged model.


Model1


ψ(Forest, PA) p(PA, Forest, HFI) ψ(Forest) p(PA, Forest, HFI)


NPar2 7


ψ(Forest + NDVI) p(PA + Forest + HFI) 7 ψ(Forest + Edge) p(PA + Forest + HFI)


6 7


ψ(Forest, PA, NDVI) p(PA, Forest, HFI) 8 Null model p(.)ψ(.)


Average model


1PA, protected area; HFI, Human Footprint Index. 2Number of parameters. 3Akaike information criterion corrected for small sample size. 4Relative difference in AICc values compared to top-ranked model. 5AICc model weight. 6Estimate of occupancy ± SE. 7Cumulative AICc model weight. 8Estimate of detection probability ± SE.


(at least until a camera needs to be serviced, in this case after c. 3 months, or K = 18) we defined the optimum monitoring effort for M. nigra as one that achieves the target standard error of 0.05 in our estimates whilst minimizing s.Wedid this by resolving the Equation for s and assuming a duration of 3 months for the surveys. As smaller absolute declines in occupancy become more


detectable as the number of seasons of monitoring increases (Beaudrot et al., 2018), we calculated the number of seasons needed to detect a 10% annual occupancy decline if the op- timal monitoring effort (calculated by Equation 1) is chosen as the long-term monitoring protocol (survey effort = s × K). To do this, we simulated data for an annual 10% decline across a time series. We used the estimates from our best model to determine the initial input parameters for occu- pancy and detection and set colonization to zero, so as to simulate a decline. We then took the generated data and fitted it to a dynamic occupancy model without covariates (Mackenzie et al., 2003). These were then assessed to deter- mine the number of seasons required to detect an annual decline of 10% with 80% confidence. Our methods follow those detailed by Beaudrot et al. (2018) and all simulations and analyseswere done in R, using code available on Github (Ahumada, 2017).


Results


Detection and occupancy From 9,749 camera-trap days, M. nigra was detected on 473 separate days in 71 of 111 sites, yielding a naïve occupancy estimate of 0.64. These 71 camera locations confirmed the presence of the species in 12 spatially distinct forest


TABLE 3 Summary of conditional model averaged parameters based on the best-supported models identified in Table 2. Estimates of the β coefficient are reported for standardized covariates (scaled to mean = 0 and unit variance of 2). See Table 2 for the models with covariates for both ψ and p.


Parameter1 p(PA: inside)


p(Forest: inside) p(HFI)


ψ(Forest: inside) ψ(PA: inside) ψ(NDVI) ψ(Edge)


Estimate ± SE 0.518 ± 0.130


0.357 ± 0.188 −0.177 ± 0.068


1.149 ± 0.528 0.677 ± 0.452 0.200 ± 0.232 0.192 ± 0.295


z value 3.99


1.90 2.60 2.18 1.50 0.86 0.65


1PA, protected area; HFI, Human Footprint Index. *Significant.


fragments, distributed across North Sulawesi, indicating a greater distribution than previously known. Investigating covariate influence on detection probabil-


ity, whilst holding occupancy constant, revealed p as a posi- tive function of being inside both a protected area and for- est, and a negative function of the Human Footprint Index (Supplementary Table 2, Supplementary Fig. 1). This model gave a detection probability of 0.28 ± SE 0.025 and was sub- sequently used to explore which combination of covariates best explained M. nigra occupancy. From the different combinations of covariates, the most parsimonious occupancy model also included protected area and forest (Table 2). M. nigra occupancy was higher in forests (β coefficient 1.14 ± SE 0.5) and inside protected areas (0.69 ± SE 0.13). However, five models were ranked ,2 ΔAICc units and thus considered equally supported (Table 3, Fig. 2). We therefore estimated detectability and occupancy by averaging across these models, resulting in


Oryx, 2020, 54(6), 784–793 © The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319000851 P(.|z|)


,0.001* 0.057


0.009* 0.030* 0.134 0.390 0.516


AICc3 ΔAICc4 Wi


1666.5 0.00 1666.6 0.09 1668.0 1.54 1668.2 1.70 1668.3 1.75


1695.8 30.4


0.28 0.27 0.13 0.12 0.12


5/ψ6 ± SE CumulativeWi 0.28


0.54 0.67 0.79 0.91


0.655 ± 0.046 0.662 ± 0.081


7


ψ ± SE/p8 ± SE 0.663 ± 0.076


0.662 ± 0.062 0.661 ± 0.073 0.662 ± 0.072 0.661 ± 0.085


0.296 ± 0.013 0.280 ± 0.025


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164