search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
884 M. I. Mahmoud et al.


FIG. 1 Locations of Mount Nlonako, Ebo Forest and various human activities within the study area in the Littoral Region of Cameroon. Data for intact forest were derived from the Intact Forest Landscapes (2000–2014) datasets, and data for tree cover loss from the Hansen/ UND/Google/USGS and NASA global dataset.


the Planet Labs Inc. application interface (Planet Team, 2017) in conjunction with human land-use interpretations (roads, logging, land clearing and oil palm plantations). These data were then used to assess land-use/land-cover change of natural forest in the study region. Cloud-cover and shadow effects masked parts of the study area, preventing land-cover monitoring of the entire Littoral Region through optical remote sensing.


Categorization and accuracy assessment


We categorized a cloud-free subset of Landsat images from 1975 and 2017 (covering 13,845 km2) that served as the effec- tive study area for this research (Fig. 1). We recognized six major land-cover categories: water body, urban area, cleared land, disturbed vegetation, natural forest and cloud cover. Our land-cover categorization was conducted using the random forest algorithm, which is a machine-learning supervised image classifier (Breiman, 2001). Random homo- geneous training and testing sampleswere collectedmanually from the 1975 and 2017 images for categorization. We optimized the accuracy and area of the 1975 and


2017 land-cover maps using the error-adjusted approach (Olofsson et al., 2014). The three steps involved in the approach to determine the map accuracies were sampling, response design and accuracy analysis. As a result, the producer’s accuracy, user’s accuracy, overall accuracy and confidence intervals were generated for the final land- cover maps produced.


Spatio-temporal analysis and mapping fine-scale drivers of deforestation


Weused a three-stage analysis to identify retrospectively the human disturbances (deforestation, land clearing and oil palm plantation development) that threatened forest cover and biodiversity in the study area of the Littoral Region. Firstly, based on the land-cover maps for 1975 and 2017 we investigated hindcast land-cover change to derive and quan- tify land-cover type change. The change detection approach was used to compute uniform temporal conversion from land cover in an initial state to a subsequent land use, and depict irregular variation verified to be human disturbance and alteration of natural forest. Secondly, landscape patterns were quantified using the


largest patch index computed from the land-cover maps of 1975 and 2017. The index provides quantitative informa- tion at the patch, class and landscape levels (Pardini, 2004). We focused on the largest patch index as a useful indicator of fragmentation or aggregation of the land-cover category of interest (in this case natural forest cover). The index is ex- pressed as a percentage of land-cover patch. As the value of the largest patch approaches 0, the size of the corresponding patch type decreases. The largest patch index is equal to 100% when the entire landscape is made up of a single patch that corresponds to the patch type (McGarigal & Marks, 1995). Hypothetically, a decline in the index from a maximal score of 100% (equivalent to 1) for an intact land- scape implies that larger fragments are being re-fragmented, reaching 0 when all fragments are ultimately converted to a


Oryx, 2020, 54(6), 882–891 © 2019 Fauna & Flora International doi:10.1017/S0030605318000881


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164