industry news ♦ compound semiconductor ♦ news digest
capacity of 150MWs annually, the equivalent, according to Robertson, of NV Energy’s stake in the recently cancelled coal plant at the Mohave Generating Station.
Researchers Develop World’s First 100W GaN pulsed laser
By integrating fundamental technologies on ultrashort pulse lasers and semiconductor laser diodes, the blue-violet laser could be used in next- generation large-capacity optical disc storage.
Researchers at Tohoku University, and Sony have jointly developed a blue-violet ultrafast pulsed semiconductor laser with dramatically improved peak laser beam output levels. The scientists claim that the output levels are 100 times better than the world’s current highest levels.
The research was conducted by Professor Hiroyuki Yokoyama of the New Industry Creation Hatchery Center (NICHe), Tohoku University, and Advanced Materials Laboratories, Sony Corporation.
The laser light source is capable of using a nonlinear optical process known as two-photon absorption, which occurs only as a result of high intensity optical pulses. This creates chemical and thermal changes in the vicinity of the lens where the laser beam is focused, in an area narrower than the diameter of the focus spot of the lens. It is anticipated that application of these properties will be possible in a wide range of fields such as three- dimensional (3D) nano-fabrication of inorganic/ organic materials in the order of nanometers, and next-generation large-capacity optical disc storage.
This latest development is a gallium nitride (GaN) laser picosecond (ps) pulse source with a wavelength of 405 nm in the blue-violet region. It is capable of generating optical pulses of ultrafast duration of 3 ps, with ultrahigh output peak power of 100 W and repetition frequency of 1 GHz.
Ultra high-output laser devices combining solid- state laserssuch as mode-locked Ti: sapphire lasers and a second harmonic generation unit have previously been researched. However, in the past, the light source box itself was bulky and a specialist technician was required to ensure the stable operation of the laser.
The newly-developed semiconductor laser system, August/September 2010
www.compoundsemiconductor.net 91
The principles for applying this technology in next- generation large-capacity optical disc-storage were tested at Sony. The scientists created void marks with a diameter of approximately 300 nm on the interior of a plastic material, at intervals of 3 micrometers, and succeeded in reading these marks with a laser beam.
on the other hand, incorporates semiconductor diodes, which enables the size of devices such as the light source box to be drastically reduced. As such, this technology should be applicable to a far broader range of applications in the future than current systems.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213