industry news ♦ compound semiconductor ♦ news digest
in Washington have developed new laser-machining techniques for radiation detectors.
“These new detectors will enable the next generation of space-based high-energy radiation astronomical research and might also be used for homeland security applications,” explained Bernard Phlips, who heads the NRL team.
The Radiation Detection Section in NRL’s Space Science Division is developing novel radiation detectors based on hole- or trench-arrays in semiconductors. These types of detectors are often called three-dimensional (3-D) detectors.
techniques. For example, laser-micromachined hole-arrays into silicon that have been developed at NRL have aspect ratios up to 100:1, while tradition al techniques allow a maximum of only 40:1.
NRL’s laser-micromachining hole-arrays work is being performed at NRL’s Institute for Nanoscience (NSI), which has just installed a new Oxford Laser E-Series micro-machining system that is making this work possible.
Marc Christophersen, from NRL’s High-Energy Space Environment Branch, who developed the novel laser-machining techniques, is the NSI custodian for the Oxford Laser micromachining system. In addition to performing his own research on the system, Christophersen is responsible for user training, tool maintenance, and the initial tool start-up.
First Solar Forms Utility Systems Business Group
Optical micrograph (cross-section) of 10μm wide laser-machined holes in an Indium Phosphide (InP) substrate which is 450 μm thick
A widely spaced hole-array is desirable in that it allows lateral depletion and charge collection. This decreases the device thickness and depletion voltage and consequently reduces material quality requirements and cost of the detector material.
The radiation detectors that will be produced with these new NRL-developed techniques will have a smaller size and substantially lower weight and power consumption than current state-of-the-art devices.
The NRL team has developed novel ways to laser-micromachine hole-arrays in a variety of semiconductors, including silicon (Si), Cadmium Telluride (CdTe) and Indium Phosphide (InP).
The reproducible new fabrication methodology is the critical process step for 3-D hole-arrays detector development. The resulting laser-machined holes have a much higher aspect ratio (diameter to depth ratio) than holes achieved with standard fabrication
The group will address the large-scale photovoltaic (PV) system solutions market and be headed by current CFO, Jens Meyerhoff.
First Solar has formed a utility systems business group to address the large-scale photovoltaic (PV) system solutions market. Jens Meyerhoff, 45, currently Chief Financial Officer (CFO) has been named president of the group.
“With the pending completion of First Solar’s acquisition of NextLight, this part of our global business represents the next leg of growth for our industry and First Solar,” said Rob Gillette, First Solar CEO.
“Jens brings significant financial, operations and market expertise to the utility systems business in order to provide our customers with a full PV system solution to their renewable energy needs. He will ensure an integrated, portfolio-based approach to project economics--from site selection and project development through to transmission access, power purchase agreement and project asset sale,” added Gillette.
First Solar will have power purchase agreements August/September 2010
www.compoundsemiconductor.net 123
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213