This page contains a Flash digital edition of a book.
GaN microelectronics  technology


of drain biases, remaining above 160 GHz up to VDS of 8 V. Increasing the drain bias to a VDS of 5 V resulted in a peak fMAX(U) of 200 GHz with an fT of 188 GHz at a VGS of -5.3 V. A cutoff frequency of 205 GHz is the highest-ever


achieved for any GaN-based transistors on any substrate. It is also the first time that AlInN/GaN-based devices have established the record for bandwidth in nitride HEMTs. Although one can expect records to continue to change hands between different types of GaN HEMTs, these results are extremely pleasing considering the rapidity of progress with the new AlInN/GaN heterostructures.


Analysis of the frequency performance, which will be published shortly, reveals that the effective velocity in AlInN/GaN channels is up to 60% higher than in the fastest AlGaN/GaN HEMT channels ever produced. Some theoretical and experimental work has linked higher channel velocities in AlInN/GaN channels to the higher 2DEG concentrations. These are believed to favor the faster dissipation of longitudinal-optical phonons in comparison to the situation in conventional AlGaN/GaN channels. Today, however, it is not possible to fully explain the improved performance observed with AlInN/GaN by this phenomenon. Further studies are necessary. For the sake of comparison, AlInN/AlN/GaN HEMTs were fabricated in a similar manner using epilayers grown on high-resistivity silicon (111) substrates. In this case, the epitaxial structure comprised a 60 nm AlN nucleation layer, 700 nm GaN insulating buffer and channel layer, a 1 nm AlN spacer layer, and an 8 nm-thick, nearly lattice-


matched, Al0.86In0.14N barrier. According to room- temperature Hall measurements, the channel electron sheet density was 1.95 x 1013 cm-2 and its mobility was 1,060 cm2/Vs. These inferior values compared to the above layers on SiC are a result of a reduction in crystal quality, which was highlighted by broader XRD linewidths. The 2DEG and mobility are 20-25 percent lower than that of the AlInN/GaN HEMT on SiC, and account for the increase in sheet resistance to 300 Ω/.


Devices with a 80 nm gate length were fabricated on these layers, which show simultaneous cutoff frequencies,


fT of 143 GHz and fMAX(U) of 176 GHz. Although these values are lower than those achieved with the 55 nm


Figure 7. The AlInN/GaN HEMTs


fabricated in the EPFL-ETHZ collaboration deliver a record breaking cut-off frequency for any form of GaN HEMT


devices on SiC, they are still the fastest nitride devices ever built on silicon. It is also interesting to note that the


fT’s obtained here for the 55 and 80 nm gate HEMTs on SiC and silicon substrates scale almost exactly with the inverse gate length. Clearly, the AlInN/GaN heterostructure has more surprises in store than one could ever anticipate!


AlInN/GaN HEMTs are fast emerging as an interesting alternative to conventional AlGaN/GaN HEMTs which offers much higher maximum current densities and transconductances in a (nearly) lattice-matched barrier system characterized by a superior thermal stability. Although the present article mainly focused on recent EPFL/ETHZ efforts toward extending the devices to higher frequencies, the fundamental properties of the AlInN/GaN system do lend themselves well to the realization of high- power, high-efficiency transistors, as recently reported by workers from Alcatel-Thales with the demonstration of 0.25 µm AlInN/GaN HEMTs with an output power of 10.3 W/mm and a power-added efficiency of 51% at 10 GHz [14]. The combined advantages of AlInN/GaN heterostructures for power HEMTs are extremely attractive and provide ample motivation to find solutions to remaining challenges associated with the material system: one can count on an increasingly important footprint for AlInN/GaN HEMTs in the field of GaN microwave and millimeter-wave electronics for the times to come.


References 1. S.Y. Park et al. Microelectronics Rel. 49 478-483 (2009) 2. A. Chini et al. Electron. Lett. 45 426-427 (2009) 3. M. Higashiwaki et al. Proc. SPIE 6894 68941L (2008) 4. Y. Cao et al. Appl. Phys. Lett. 90 182112 (2007) 5. M. Higashiwaki et al. Appl. Phys. Express 1 021103 (2008) 6. J. Kuzmík IEEE Electron Device Lett. 22 510-512 (2001) 7. F. Medjdoub et al. IEEE Electron Device Lett. 29 422-425 (2008)


8. F. Medjdoub et al. The Open Electrical and Electronic Engineering Journal 2 1-7 (2008) 9. L.D. Nguyen et al. IEEE Proc. 80 494-518 (1992) 10. L. Ardaravicius et al. J. Appl. Phys. 106 073708 (2009) 11. H.F. Sun et al. IEEE Electron Device Lett. 30 796-798 (2009) 12. H.F. Sun et al., IEEE Electron Device Lett. 31 293-295 (2010) 13. L. Zhou et al. Appl. Phys. Lett. 94 121909 (2009) 14. N. Sarazin et al. IEEE Electron Device Lett. 31 11-13 (2010)


August / September 2010 www.compoundsemiconductor.net 21


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213
Produced with Yudu - www.yudu.com