This page contains a Flash digital edition of a book.
SiC electronics  technology


with the RF test fixture to control the entire DC and RF functioning of the device. This new circuit technology will hopefully help to speed up our customer’s implementation of our products into their power amplifiers.


The primary function of the source pulser is to set an appropriate bias level for the device. The pulser’s main component is a high-speed analog switch that toggles between an off-voltage of +15 V and an on-voltage of 3- 5 V. The bias switching parameters are synchronized with the RF pulse.


A “source pulser” board is used with an RF test fixture to control the DC and RF behavior of the SiC SIT


performance, highly precise automated die-attach and wire-bond machines are used in production.


Driving the SIT The SIT is designed to operate at full power over 406- 450 MHz, a lower spread of frequencies within the UHF band. To do this it should be biased in “class AB, Common Gate” and run with a drain supply at 125 V. The terminal impedances are only a few Ohms, so an external matching network is needed to transform the impedance from the transistor up to 50 Ohms for device characterization and use. Fixture optimization includes a complete “load pull” analysis of the transistor, which can confirm that the matching network is designed for the best overall performance.


One of the benefits of load pull analysis is that it yields valuable information on device performance. It can quickly determine the optimum input and output device impedance over the band of interest, and rapidly deliver a trade-off analysis on critical RF performance parameters. We use these load pull impedance values as a target for the design of the input and output circuit-matching networks.


The typical input and output contours for a single frequency are shown in Figure 3. These contours offer an indication of how sensitive the device is to impedance changes. We obtain contours and optimum input/output impedance for each frequency across the band of interest. Our SiC SIT is a depletion mode device. Consequently, application of a gate bias is needed to turn the product ‘off’ before applying the drain bias. To aid the driving of the SIT, we include a ‘source pulser’ design


When we start to manufacture our SIT in full production, we will add a bias sequence feature to ensure a proper power-up sequence during RF tests. Future efforts in this area may include the development of highly compact and efficient ASIC versions of the pulser assembly. Our SIT is designed to deliver incredibly high, pulsed powers. To verify that every product is capable of delivering this level of performance through its lifetime we will subject every transistor to a full functional set of tests prior to shipment. Due to the high voltages and currents associated with the driving of the device, the test procedure accommodates the latest operator safety procedures and power handling.


One of the strengths of our SIT is its ability to operate over a wide range of conditions, from very high peak powers at medium pulses to very long pulses at high duty factors. Thanks to its versatility of driving conditions, the SIT can support a wide range of applications. So to help potential customers evaluate what our SIT can do for them we have characterized this transistor for operation at conditions beyond those listed on the standard data sheet. To do this, we have made substantial investments in RF metrology and also developed highly automated test software. The reward of these efforts is the characterization of our products over multiple test conditions with very high levels of accuracy and repeatability. We believe that our SIT will have a massive impact on the design and build of the next generation of radar systems, and also their operational life, which is typically more than 35 years. We expect uptake of our SiC devices to be high. They can slash the number of components that a radar system needs, making it far smaller and cheaper. What’s more, the introduction of SiC into radar systems can cut maintenance costs and greatly expand operating life. Making a transition to a new product always involves some


effort, because new devices behave differently and require new design rules. But we are convinced that this effort is justifiable, because our SIT offers great performance, alongside the consistency and reliability that designers of radar system


are looking for.


Microsemi has a Centrotherm HV 100 high temperature implant anneal system in its power chip fab in Bend, Oregon. This tool is capable of operating at up to 1700o


C


Left: Microsemi’s SIT, which is shown with the lid off, is


shipped in a hermetically sealed package. Gold wiring is used throughout


August / September 2010 www.compoundsemiconductor.net 33


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213
Produced with Yudu - www.yudu.com